/* * Licensed under the GNU Lesser General Public License Version 3 * * This library is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the license, or * (at your option) any later version. * * This software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library. If not, see . */ // generated automatically - do not change module gio.Task; private import gio.AsyncResultIF; private import gio.AsyncResultT; private import gio.Cancellable; private import gio.c.functions; public import gio.c.types; private import glib.ConstructionException; private import glib.ErrorG; private import glib.GException; private import glib.MainContext; private import glib.Source; private import glib.Str; private import gobject.ObjectG; /** * A #GTask represents and manages a cancellable "task". * * ## Asynchronous operations * * The most common usage of #GTask is as a #GAsyncResult, to * manage data during an asynchronous operation. You call * g_task_new() in the "start" method, followed by * g_task_set_task_data() and the like if you need to keep some * additional data associated with the task, and then pass the * task object around through your asynchronous operation. * Eventually, you will call a method such as * g_task_return_pointer() or g_task_return_error(), which will * save the value you give it and then invoke the task's callback * function (waiting until the next iteration of the main * loop first, if necessary). The caller will pass the #GTask back * to the operation's finish function (as a #GAsyncResult), and * you can use g_task_propagate_pointer() or the like to extract * the return value. * * Here is an example for using GTask as a GAsyncResult: * |[ * typedef struct { * CakeFrostingType frosting; * char *message; * } DecorationData; * * static void * decoration_data_free (DecorationData *decoration) * { * g_free (decoration->message); * g_slice_free (DecorationData, decoration); * } * * static void * baked_cb (Cake *cake, * gpointer user_data) * { * GTask *task = user_data; * DecorationData *decoration = g_task_get_task_data (task); * GError *error = NULL; * * if (cake == NULL) * { * g_task_return_new_error (task, BAKER_ERROR, BAKER_ERROR_NO_FLOUR, * "Go to the supermarket"); * g_object_unref (task); * return; * } * * if (!cake_decorate (cake, decoration->frosting, decoration->message, &error)) * { * g_object_unref (cake); * // g_task_return_error() takes ownership of error * g_task_return_error (task, error); * g_object_unref (task); * return; * } * * g_task_return_pointer (task, cake, g_object_unref); * g_object_unref (task); * } * * void * baker_bake_cake_async (Baker *self, * guint radius, * CakeFlavor flavor, * CakeFrostingType frosting, * const char *message, * GCancellable *cancellable, * GAsyncReadyCallback callback, * gpointer user_data) * { * GTask *task; * DecorationData *decoration; * Cake *cake; * * task = g_task_new (self, cancellable, callback, user_data); * if (radius < 3) * { * g_task_return_new_error (task, BAKER_ERROR, BAKER_ERROR_TOO_SMALL, * "%ucm radius cakes are silly", * radius); * g_object_unref (task); * return; * } * * cake = _baker_get_cached_cake (self, radius, flavor, frosting, message); * if (cake != NULL) * { * // _baker_get_cached_cake() returns a reffed cake * g_task_return_pointer (task, cake, g_object_unref); * g_object_unref (task); * return; * } * * decoration = g_slice_new (DecorationData); * decoration->frosting = frosting; * decoration->message = g_strdup (message); * g_task_set_task_data (task, decoration, (GDestroyNotify) decoration_data_free); * * _baker_begin_cake (self, radius, flavor, cancellable, baked_cb, task); * } * * Cake * * baker_bake_cake_finish (Baker *self, * GAsyncResult *result, * GError **error) * { * g_return_val_if_fail (g_task_is_valid (result, self), NULL); * * return g_task_propagate_pointer (G_TASK (result), error); * } * ]| * * ## Chained asynchronous operations * * #GTask also tries to simplify asynchronous operations that * internally chain together several smaller asynchronous * operations. g_task_get_cancellable(), g_task_get_context(), * and g_task_get_priority() allow you to get back the task's * #GCancellable, #GMainContext, and [I/O priority][io-priority] * when starting a new subtask, so you don't have to keep track * of them yourself. g_task_attach_source() simplifies the case * of waiting for a source to fire (automatically using the correct * #GMainContext and priority). * * Here is an example for chained asynchronous operations: * |[ * typedef struct { * Cake *cake; * CakeFrostingType frosting; * char *message; * } BakingData; * * static void * decoration_data_free (BakingData *bd) * { * if (bd->cake) * g_object_unref (bd->cake); * g_free (bd->message); * g_slice_free (BakingData, bd); * } * * static void * decorated_cb (Cake *cake, * GAsyncResult *result, * gpointer user_data) * { * GTask *task = user_data; * GError *error = NULL; * * if (!cake_decorate_finish (cake, result, &error)) * { * g_object_unref (cake); * g_task_return_error (task, error); * g_object_unref (task); * return; * } * * // baking_data_free() will drop its ref on the cake, so we have to * // take another here to give to the caller. * g_task_return_pointer (result, g_object_ref (cake), g_object_unref); * g_object_unref (task); * } * * static void * decorator_ready (gpointer user_data) * { * GTask *task = user_data; * BakingData *bd = g_task_get_task_data (task); * * cake_decorate_async (bd->cake, bd->frosting, bd->message, * g_task_get_cancellable (task), * decorated_cb, task); * } * * static void * baked_cb (Cake *cake, * gpointer user_data) * { * GTask *task = user_data; * BakingData *bd = g_task_get_task_data (task); * GError *error = NULL; * * if (cake == NULL) * { * g_task_return_new_error (task, BAKER_ERROR, BAKER_ERROR_NO_FLOUR, * "Go to the supermarket"); * g_object_unref (task); * return; * } * * bd->cake = cake; * * // Bail out now if the user has already cancelled * if (g_task_return_error_if_cancelled (task)) * { * g_object_unref (task); * return; * } * * if (cake_decorator_available (cake)) * decorator_ready (task); * else * { * GSource *source; * * source = cake_decorator_wait_source_new (cake); * // Attach @source to @task's GMainContext and have it call * // decorator_ready() when it is ready. * g_task_attach_source (task, source, * G_CALLBACK (decorator_ready)); * g_source_unref (source); * } * } * * void * baker_bake_cake_async (Baker *self, * guint radius, * CakeFlavor flavor, * CakeFrostingType frosting, * const char *message, * gint priority, * GCancellable *cancellable, * GAsyncReadyCallback callback, * gpointer user_data) * { * GTask *task; * BakingData *bd; * * task = g_task_new (self, cancellable, callback, user_data); * g_task_set_priority (task, priority); * * bd = g_slice_new0 (BakingData); * bd->frosting = frosting; * bd->message = g_strdup (message); * g_task_set_task_data (task, bd, (GDestroyNotify) baking_data_free); * * _baker_begin_cake (self, radius, flavor, cancellable, baked_cb, task); * } * * Cake * * baker_bake_cake_finish (Baker *self, * GAsyncResult *result, * GError **error) * { * g_return_val_if_fail (g_task_is_valid (result, self), NULL); * * return g_task_propagate_pointer (G_TASK (result), error); * } * ]| * * ## Asynchronous operations from synchronous ones * * You can use g_task_run_in_thread() to turn a synchronous * operation into an asynchronous one, by running it in a thread * which will then dispatch the result back to the caller's * #GMainContext when it completes. * * Running a task in a thread: * |[ * typedef struct { * guint radius; * CakeFlavor flavor; * CakeFrostingType frosting; * char *message; * } CakeData; * * static void * cake_data_free (CakeData *cake_data) * { * g_free (cake_data->message); * g_slice_free (CakeData, cake_data); * } * * static void * bake_cake_thread (GTask *task, * gpointer source_object, * gpointer task_data, * GCancellable *cancellable) * { * Baker *self = source_object; * CakeData *cake_data = task_data; * Cake *cake; * GError *error = NULL; * * cake = bake_cake (baker, cake_data->radius, cake_data->flavor, * cake_data->frosting, cake_data->message, * cancellable, &error); * if (cake) * g_task_return_pointer (task, cake, g_object_unref); * else * g_task_return_error (task, error); * } * * void * baker_bake_cake_async (Baker *self, * guint radius, * CakeFlavor flavor, * CakeFrostingType frosting, * const char *message, * GCancellable *cancellable, * GAsyncReadyCallback callback, * gpointer user_data) * { * CakeData *cake_data; * GTask *task; * * cake_data = g_slice_new (CakeData); * cake_data->radius = radius; * cake_data->flavor = flavor; * cake_data->frosting = frosting; * cake_data->message = g_strdup (message); * task = g_task_new (self, cancellable, callback, user_data); * g_task_set_task_data (task, cake_data, (GDestroyNotify) cake_data_free); * g_task_run_in_thread (task, bake_cake_thread); * g_object_unref (task); * } * * Cake * * baker_bake_cake_finish (Baker *self, * GAsyncResult *result, * GError **error) * { * g_return_val_if_fail (g_task_is_valid (result, self), NULL); * * return g_task_propagate_pointer (G_TASK (result), error); * } * ]| * * ## Adding cancellability to uncancellable tasks * * Finally, g_task_run_in_thread() and g_task_run_in_thread_sync() * can be used to turn an uncancellable operation into a * cancellable one. If you call g_task_set_return_on_cancel(), * passing %TRUE, then if the task's #GCancellable is cancelled, * it will return control back to the caller immediately, while * allowing the task thread to continue running in the background * (and simply discarding its result when it finally does finish). * Provided that the task thread is careful about how it uses * locks and other externally-visible resources, this allows you * to make "GLib-friendly" asynchronous and cancellable * synchronous variants of blocking APIs. * * Cancelling a task: * |[ * static void * bake_cake_thread (GTask *task, * gpointer source_object, * gpointer task_data, * GCancellable *cancellable) * { * Baker *self = source_object; * CakeData *cake_data = task_data; * Cake *cake; * GError *error = NULL; * * cake = bake_cake (baker, cake_data->radius, cake_data->flavor, * cake_data->frosting, cake_data->message, * &error); * if (error) * { * g_task_return_error (task, error); * return; * } * * // If the task has already been cancelled, then we don't want to add * // the cake to the cake cache. Likewise, we don't want to have the * // task get cancelled in the middle of updating the cache. * // g_task_set_return_on_cancel() will return %TRUE here if it managed * // to disable return-on-cancel, or %FALSE if the task was cancelled * // before it could. * if (g_task_set_return_on_cancel (task, FALSE)) * { * // If the caller cancels at this point, their * // GAsyncReadyCallback won't be invoked until we return, * // so we don't have to worry that this code will run at * // the same time as that code does. But if there were * // other functions that might look at the cake cache, * // then we'd probably need a GMutex here as well. * baker_add_cake_to_cache (baker, cake); * g_task_return_pointer (task, cake, g_object_unref); * } * } * * void * baker_bake_cake_async (Baker *self, * guint radius, * CakeFlavor flavor, * CakeFrostingType frosting, * const char *message, * GCancellable *cancellable, * GAsyncReadyCallback callback, * gpointer user_data) * { * CakeData *cake_data; * GTask *task; * * cake_data = g_slice_new (CakeData); * * ... * * task = g_task_new (self, cancellable, callback, user_data); * g_task_set_task_data (task, cake_data, (GDestroyNotify) cake_data_free); * g_task_set_return_on_cancel (task, TRUE); * g_task_run_in_thread (task, bake_cake_thread); * } * * Cake * * baker_bake_cake_sync (Baker *self, * guint radius, * CakeFlavor flavor, * CakeFrostingType frosting, * const char *message, * GCancellable *cancellable, * GError **error) * { * CakeData *cake_data; * GTask *task; * Cake *cake; * * cake_data = g_slice_new (CakeData); * * ... * * task = g_task_new (self, cancellable, NULL, NULL); * g_task_set_task_data (task, cake_data, (GDestroyNotify) cake_data_free); * g_task_set_return_on_cancel (task, TRUE); * g_task_run_in_thread_sync (task, bake_cake_thread); * * cake = g_task_propagate_pointer (task, error); * g_object_unref (task); * return cake; * } * ]| * * ## Porting from GSimpleAsyncResult * * #GTask's API attempts to be simpler than #GSimpleAsyncResult's * in several ways: * - You can save task-specific data with g_task_set_task_data(), and * retrieve it later with g_task_get_task_data(). This replaces the * abuse of g_simple_async_result_set_op_res_gpointer() for the same * purpose with #GSimpleAsyncResult. * - In addition to the task data, #GTask also keeps track of the * [priority][io-priority], #GCancellable, and * #GMainContext associated with the task, so tasks that consist of * a chain of simpler asynchronous operations will have easy access * to those values when starting each sub-task. * - g_task_return_error_if_cancelled() provides simplified * handling for cancellation. In addition, cancellation * overrides any other #GTask return value by default, like * #GSimpleAsyncResult does when * g_simple_async_result_set_check_cancellable() is called. * (You can use g_task_set_check_cancellable() to turn off that * behavior.) On the other hand, g_task_run_in_thread() * guarantees that it will always run your * `task_func`, even if the task's #GCancellable * is already cancelled before the task gets a chance to run; * you can start your `task_func` with a * g_task_return_error_if_cancelled() check if you need the * old behavior. * - The "return" methods (eg, g_task_return_pointer()) * automatically cause the task to be "completed" as well, and * there is no need to worry about the "complete" vs "complete * in idle" distinction. (#GTask automatically figures out * whether the task's callback can be invoked directly, or * if it needs to be sent to another #GMainContext, or delayed * until the next iteration of the current #GMainContext.) * - The "finish" functions for #GTask-based operations are generally * much simpler than #GSimpleAsyncResult ones, normally consisting * of only a single call to g_task_propagate_pointer() or the like. * Since g_task_propagate_pointer() "steals" the return value from * the #GTask, it is not necessary to juggle pointers around to * prevent it from being freed twice. * - With #GSimpleAsyncResult, it was common to call * g_simple_async_result_propagate_error() from the * `_finish()` wrapper function, and have * virtual method implementations only deal with successful * returns. This behavior is deprecated, because it makes it * difficult for a subclass to chain to a parent class's async * methods. Instead, the wrapper function should just be a * simple wrapper, and the virtual method should call an * appropriate `g_task_propagate_` function. * Note that wrapper methods can now use * g_async_result_legacy_propagate_error() to do old-style * #GSimpleAsyncResult error-returning behavior, and * g_async_result_is_tagged() to check if a result is tagged as * having come from the `_async()` wrapper * function (for "short-circuit" results, such as when passing * 0 to g_input_stream_read_async()). */ public class Task : ObjectG, AsyncResultIF { /** the main Gtk struct */ protected GTask* gTask; /** Get the main Gtk struct */ public GTask* getTaskStruct(bool transferOwnership = false) { if (transferOwnership) ownedRef = false; return gTask; } /** the main Gtk struct as a void* */ protected override void* getStruct() { return cast(void*)gTask; } protected override void setStruct(GObject* obj) { gTask = cast(GTask*)obj; super.setStruct(obj); } /** * Sets our main struct and passes it to the parent class. */ public this (GTask* gTask, bool ownedRef = false) { this.gTask = gTask; super(cast(GObject*)gTask, ownedRef); } // add the AsyncResult capabilities mixin AsyncResultT!(GTask); /** */ public static GType getType() { return g_task_get_type(); } /** * Creates a #GTask acting on @source_object, which will eventually be * used to invoke @callback in the current * [thread-default main context][g-main-context-push-thread-default]. * * Call this in the "start" method of your asynchronous method, and * pass the #GTask around throughout the asynchronous operation. You * can use g_task_set_task_data() to attach task-specific data to the * object, which you can retrieve later via g_task_get_task_data(). * * By default, if @cancellable is cancelled, then the return value of * the task will always be %G_IO_ERROR_CANCELLED, even if the task had * already completed before the cancellation. This allows for * simplified handling in cases where cancellation may imply that * other objects that the task depends on have been destroyed. If you * do not want this behavior, you can use * g_task_set_check_cancellable() to change it. * * Params: * sourceObject = the #GObject that owns * this task, or %NULL. * cancellable = optional #GCancellable object, %NULL to ignore. * callback = a #GAsyncReadyCallback. * callbackData = user data passed to @callback. * * Returns: a #GTask. * * Since: 2.36 * * Throws: ConstructionException GTK+ fails to create the object. */ public this(ObjectG sourceObject, Cancellable cancellable, GAsyncReadyCallback callback, void* callbackData) { auto p = g_task_new((sourceObject is null) ? null : sourceObject.getObjectGStruct(), (cancellable is null) ? null : cancellable.getCancellableStruct(), callback, callbackData); if(p is null) { throw new ConstructionException("null returned by new"); } this(cast(GTask*) p, true); } /** * Checks that @result is a #GTask, and that @source_object is its * source object (or that @source_object is %NULL and @result has no * source object). This can be used in g_return_if_fail() checks. * * Params: * result = A #GAsyncResult * sourceObject = the source object * expected to be associated with the task * * Returns: %TRUE if @result and @source_object are valid, %FALSE * if not * * Since: 2.36 */ public static bool isValid(AsyncResultIF result, ObjectG sourceObject) { return g_task_is_valid((result is null) ? null : result.getAsyncResultStruct(), (sourceObject is null) ? null : sourceObject.getObjectGStruct()) != 0; } /** * Creates a #GTask and then immediately calls g_task_return_error() * on it. Use this in the wrapper function of an asynchronous method * when you want to avoid even calling the virtual method. You can * then use g_async_result_is_tagged() in the finish method wrapper to * check if the result there is tagged as having been created by the * wrapper method, and deal with it appropriately if so. * * See also g_task_report_new_error(). * * Params: * sourceObject = the #GObject that owns * this task, or %NULL. * callback = a #GAsyncReadyCallback. * callbackData = user data passed to @callback. * sourceTag = an opaque pointer indicating the source of this task * error = error to report * * Since: 2.36 */ public static void reportError(ObjectG sourceObject, GAsyncReadyCallback callback, void* callbackData, void* sourceTag, ErrorG error) { g_task_report_error((sourceObject is null) ? null : sourceObject.getObjectGStruct(), callback, callbackData, sourceTag, (error is null) ? null : error.getErrorGStruct(true)); } /** * A utility function for dealing with async operations where you need * to wait for a #GSource to trigger. Attaches @source to @task's * #GMainContext with @task's [priority][io-priority], and sets @source's * callback to @callback, with @task as the callback's `user_data`. * * This takes a reference on @task until @source is destroyed. * * Params: * source = the source to attach * callback = the callback to invoke when @source triggers * * Since: 2.36 */ public void attachSource(Source source, GSourceFunc callback) { g_task_attach_source(gTask, (source is null) ? null : source.getSourceStruct(), callback); } /** * Gets @task's #GCancellable * * Returns: @task's #GCancellable * * Since: 2.36 */ public Cancellable getCancellable() { auto p = g_task_get_cancellable(gTask); if(p is null) { return null; } return ObjectG.getDObject!(Cancellable)(cast(GCancellable*) p); } /** * Gets @task's check-cancellable flag. See * g_task_set_check_cancellable() for more details. * * Since: 2.36 */ public bool getCheckCancellable() { return g_task_get_check_cancellable(gTask) != 0; } /** * Gets the value of #GTask:completed. This changes from %FALSE to %TRUE after * the task’s callback is invoked, and will return %FALSE if called from inside * the callback. * * Returns: %TRUE if the task has completed, %FALSE otherwise. * * Since: 2.44 */ public bool getCompleted() { return g_task_get_completed(gTask) != 0; } /** * Gets the #GMainContext that @task will return its result in (that * is, the context that was the * [thread-default main context][g-main-context-push-thread-default] * at the point when @task was created). * * This will always return a non-%NULL value, even if the task's * context is the default #GMainContext. * * Returns: @task's #GMainContext * * Since: 2.36 */ public MainContext getContext() { auto p = g_task_get_context(gTask); if(p is null) { return null; } return new MainContext(cast(GMainContext*) p); } /** * Gets @task's priority * * Returns: @task's priority * * Since: 2.36 */ public int getPriority() { return g_task_get_priority(gTask); } /** * Gets @task's return-on-cancel flag. See * g_task_set_return_on_cancel() for more details. * * Since: 2.36 */ public bool getReturnOnCancel() { return g_task_get_return_on_cancel(gTask) != 0; } /** * Gets the source object from @task. Like * g_async_result_get_source_object(), but does not ref the object. * * Returns: @task's source object, or %NULL * * Since: 2.36 */ public ObjectG getSourceObject() { auto p = g_task_get_source_object(gTask); if(p is null) { return null; } return ObjectG.getDObject!(ObjectG)(cast(GObject*) p); } /** * Gets @task's source tag. See g_task_set_source_tag(). * * Returns: @task's source tag * * Since: 2.36 */ public void* getSourceTag() { return g_task_get_source_tag(gTask); } /** * Gets @task's `task_data`. * * Returns: @task's `task_data`. * * Since: 2.36 */ public void* getTaskData() { return g_task_get_task_data(gTask); } /** * Tests if @task resulted in an error. * * Returns: %TRUE if the task resulted in an error, %FALSE otherwise. * * Since: 2.36 */ public bool hadError() { return g_task_had_error(gTask) != 0; } /** * Gets the result of @task as a #gboolean. * * If the task resulted in an error, or was cancelled, then this will * instead return %FALSE and set @error. * * Since this method transfers ownership of the return value (or * error) to the caller, you may only call it once. * * Returns: the task result, or %FALSE on error * * Since: 2.36 * * Throws: GException on failure. */ public bool propagateBoolean() { GError* err = null; auto p = g_task_propagate_boolean(gTask, &err) != 0; if (err !is null) { throw new GException( new ErrorG(err) ); } return p; } /** * Gets the result of @task as an integer (#gssize). * * If the task resulted in an error, or was cancelled, then this will * instead return -1 and set @error. * * Since this method transfers ownership of the return value (or * error) to the caller, you may only call it once. * * Returns: the task result, or -1 on error * * Since: 2.36 * * Throws: GException on failure. */ public ptrdiff_t propagateInt() { GError* err = null; auto p = g_task_propagate_int(gTask, &err); if (err !is null) { throw new GException( new ErrorG(err) ); } return p; } /** * Gets the result of @task as a pointer, and transfers ownership * of that value to the caller. * * If the task resulted in an error, or was cancelled, then this will * instead return %NULL and set @error. * * Since this method transfers ownership of the return value (or * error) to the caller, you may only call it once. * * Returns: the task result, or %NULL on error * * Since: 2.36 * * Throws: GException on failure. */ public void* propagatePointer() { GError* err = null; auto p = g_task_propagate_pointer(gTask, &err); if (err !is null) { throw new GException( new ErrorG(err) ); } return p; } /** * Sets @task's result to @result and completes the task (see * g_task_return_pointer() for more discussion of exactly what this * means). * * Params: * result = the #gboolean result of a task function. * * Since: 2.36 */ public void returnBoolean(bool result) { g_task_return_boolean(gTask, result); } /** * Sets @task's result to @error (which @task assumes ownership of) * and completes the task (see g_task_return_pointer() for more * discussion of exactly what this means). * * Note that since the task takes ownership of @error, and since the * task may be completed before returning from g_task_return_error(), * you cannot assume that @error is still valid after calling this. * Call g_error_copy() on the error if you need to keep a local copy * as well. * * See also g_task_return_new_error(). * * Params: * error = the #GError result of a task function. * * Since: 2.36 */ public void returnError(ErrorG error) { g_task_return_error(gTask, (error is null) ? null : error.getErrorGStruct(true)); } /** * Checks if @task's #GCancellable has been cancelled, and if so, sets * @task's error accordingly and completes the task (see * g_task_return_pointer() for more discussion of exactly what this * means). * * Returns: %TRUE if @task has been cancelled, %FALSE if not * * Since: 2.36 */ public bool returnErrorIfCancelled() { return g_task_return_error_if_cancelled(gTask) != 0; } /** * Sets @task's result to @result and completes the task (see * g_task_return_pointer() for more discussion of exactly what this * means). * * Params: * result = the integer (#gssize) result of a task function. * * Since: 2.36 */ public void returnInt(ptrdiff_t result) { g_task_return_int(gTask, result); } /** * Sets @task's result to @result and completes the task. If @result * is not %NULL, then @result_destroy will be used to free @result if * the caller does not take ownership of it with * g_task_propagate_pointer(). * * "Completes the task" means that for an ordinary asynchronous task * it will either invoke the task's callback, or else queue that * callback to be invoked in the proper #GMainContext, or in the next * iteration of the current #GMainContext. For a task run via * g_task_run_in_thread() or g_task_run_in_thread_sync(), calling this * method will save @result to be returned to the caller later, but * the task will not actually be completed until the #GTaskThreadFunc * exits. * * Note that since the task may be completed before returning from * g_task_return_pointer(), you cannot assume that @result is still * valid after calling this, unless you are still holding another * reference on it. * * Params: * result = the pointer result of a task * function * resultDestroy = a #GDestroyNotify function. * * Since: 2.36 */ public void returnPointer(void* result, GDestroyNotify resultDestroy) { g_task_return_pointer(gTask, result, resultDestroy); } /** * Runs @task_func in another thread. When @task_func returns, @task's * #GAsyncReadyCallback will be invoked in @task's #GMainContext. * * This takes a ref on @task until the task completes. * * See #GTaskThreadFunc for more details about how @task_func is handled. * * Although GLib currently rate-limits the tasks queued via * g_task_run_in_thread(), you should not assume that it will always * do this. If you have a very large number of tasks to run, but don't * want them to all run at once, you should only queue a limited * number of them at a time. * * Params: * taskFunc = a #GTaskThreadFunc * * Since: 2.36 */ public void runInThread(GTaskThreadFunc taskFunc) { g_task_run_in_thread(gTask, taskFunc); } /** * Runs @task_func in another thread, and waits for it to return or be * cancelled. You can use g_task_propagate_pointer(), etc, afterward * to get the result of @task_func. * * See #GTaskThreadFunc for more details about how @task_func is handled. * * Normally this is used with tasks created with a %NULL * `callback`, but note that even if the task does * have a callback, it will not be invoked when @task_func returns. * #GTask:completed will be set to %TRUE just before this function returns. * * Although GLib currently rate-limits the tasks queued via * g_task_run_in_thread_sync(), you should not assume that it will * always do this. If you have a very large number of tasks to run, * but don't want them to all run at once, you should only queue a * limited number of them at a time. * * Params: * taskFunc = a #GTaskThreadFunc * * Since: 2.36 */ public void runInThreadSync(GTaskThreadFunc taskFunc) { g_task_run_in_thread_sync(gTask, taskFunc); } /** * Sets or clears @task's check-cancellable flag. If this is %TRUE * (the default), then g_task_propagate_pointer(), etc, and * g_task_had_error() will check the task's #GCancellable first, and * if it has been cancelled, then they will consider the task to have * returned an "Operation was cancelled" error * (%G_IO_ERROR_CANCELLED), regardless of any other error or return * value the task may have had. * * If @check_cancellable is %FALSE, then the #GTask will not check the * cancellable itself, and it is up to @task's owner to do this (eg, * via g_task_return_error_if_cancelled()). * * If you are using g_task_set_return_on_cancel() as well, then * you must leave check-cancellable set %TRUE. * * Params: * checkCancellable = whether #GTask will check the state of * its #GCancellable for you. * * Since: 2.36 */ public void setCheckCancellable(bool checkCancellable) { g_task_set_check_cancellable(gTask, checkCancellable); } /** * Sets @task's priority. If you do not call this, it will default to * %G_PRIORITY_DEFAULT. * * This will affect the priority of #GSources created with * g_task_attach_source() and the scheduling of tasks run in threads, * and can also be explicitly retrieved later via * g_task_get_priority(). * * Params: * priority = the [priority][io-priority] of the request * * Since: 2.36 */ public void setPriority(int priority) { g_task_set_priority(gTask, priority); } /** * Sets or clears @task's return-on-cancel flag. This is only * meaningful for tasks run via g_task_run_in_thread() or * g_task_run_in_thread_sync(). * * If @return_on_cancel is %TRUE, then cancelling @task's * #GCancellable will immediately cause it to return, as though the * task's #GTaskThreadFunc had called * g_task_return_error_if_cancelled() and then returned. * * This allows you to create a cancellable wrapper around an * uninterruptable function. The #GTaskThreadFunc just needs to be * careful that it does not modify any externally-visible state after * it has been cancelled. To do that, the thread should call * g_task_set_return_on_cancel() again to (atomically) set * return-on-cancel %FALSE before making externally-visible changes; * if the task gets cancelled before the return-on-cancel flag could * be changed, g_task_set_return_on_cancel() will indicate this by * returning %FALSE. * * You can disable and re-enable this flag multiple times if you wish. * If the task's #GCancellable is cancelled while return-on-cancel is * %FALSE, then calling g_task_set_return_on_cancel() to set it %TRUE * again will cause the task to be cancelled at that point. * * If the task's #GCancellable is already cancelled before you call * g_task_run_in_thread()/g_task_run_in_thread_sync(), then the * #GTaskThreadFunc will still be run (for consistency), but the task * will also be completed right away. * * Params: * returnOnCancel = whether the task returns automatically when * it is cancelled. * * Returns: %TRUE if @task's return-on-cancel flag was changed to * match @return_on_cancel. %FALSE if @task has already been * cancelled. * * Since: 2.36 */ public bool setReturnOnCancel(bool returnOnCancel) { return g_task_set_return_on_cancel(gTask, returnOnCancel) != 0; } /** * Sets @task's source tag. You can use this to tag a task return * value with a particular pointer (usually a pointer to the function * doing the tagging) and then later check it using * g_task_get_source_tag() (or g_async_result_is_tagged()) in the * task's "finish" function, to figure out if the response came from a * particular place. * * Params: * sourceTag = an opaque pointer indicating the source of this task * * Since: 2.36 */ public void setSourceTag(void* sourceTag) { g_task_set_source_tag(gTask, sourceTag); } /** * Sets @task's task data (freeing the existing task data, if any). * * Params: * taskData = task-specific data * taskDataDestroy = #GDestroyNotify for @task_data * * Since: 2.36 */ public void setTaskData(void* taskData, GDestroyNotify taskDataDestroy) { g_task_set_task_data(gTask, taskData, taskDataDestroy); } }