/* * coaxline.cpp - coaxial cable class implementation * * Copyright (C) 2006, 2008, 2009, 2011 Stefan Jahn * * This is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this package; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, * Boston, MA 02110-1301, USA. * * $Id$ * */ #if HAVE_CONFIG_H # include #endif #include "component.h" #include "coaxline.h" using namespace qucs; coaxline::coaxline () : circuit (2) { alpha = beta = zl = fc = 0; type = CIR_COAXLINE; } void coaxline::calcPropagation (nr_double_t frequency) { nr_double_t er = getPropertyDouble ("er"); nr_double_t mur = getPropertyDouble ("mur"); nr_double_t rho = getPropertyDouble ("rho"); nr_double_t tand = getPropertyDouble ("tand"); nr_double_t d = getPropertyDouble ("d"); nr_double_t D = getPropertyDouble ("D"); nr_double_t ad, ac, rs; // check cutoff frequency if (frequency > fc) { logprint (LOG_ERROR, "WARNING: Operating frequency (%g) beyond " "cutoff frequency (%g).\n", frequency, fc); } // calculate losses ad = pi / C0 * frequency * std::sqrt (er) * tand; rs = std::sqrt (pi * frequency * mur * MU0 * rho); ac = std::sqrt (er) * (1 / d + 1 / D) / std::log (D / d) * rs / Z0; // calculate propagation constants and reference impedance alpha = ac + ad; beta = std::sqrt (er * mur) * 2 * pi * frequency / C0; zl = Z0 / 2 / pi / std::sqrt (er) * std::log (D / d); } void coaxline::calcNoiseSP (nr_double_t) { nr_double_t l = getPropertyDouble ("L"); if (l < 0) return; // calculate noise using Bosma's theorem nr_double_t T = getPropertyDouble ("Temp"); matrix s = getMatrixS (); matrix e = eye (getSize ()); setMatrixN (celsius2kelvin (T) / T0 * (e - s * transpose (conj (s)))); } void coaxline::initCheck (void) { nr_double_t d = getPropertyDouble ("d"); nr_double_t D = getPropertyDouble ("D"); nr_double_t er = getPropertyDouble ("er"); nr_double_t mur = getPropertyDouble ("mur"); // check validity if (d >= D) { logprint (LOG_ERROR, "ERROR: Inner diameter larger than outer diameter.\n"); } nr_double_t f1, f2, cl; cl = C0 / std::sqrt (mur * er); f1 = cl / (pi_over_2 * (D + d)); // TE_11 f2 = cl / (1 * (D - d)); // TM_N1 fc = std::min (f1, f2); } void coaxline::saveCharacteristics (nr_double_t) { setCharacteristic ("Zl", zl); } void coaxline::initSP (void) { // allocate S-parameter matrix allocMatrixS (); initCheck (); } void coaxline::calcSP (nr_double_t frequency) { nr_double_t l = getPropertyDouble ("L"); // calculate propagation constants calcPropagation (frequency); // calculate S-parameters nr_double_t z = zl / z0; nr_double_t y = 1 / z; nr_complex_t g = nr_complex_t (alpha, beta); nr_complex_t n = 2.0 * cosh (g * l) + (z + y) * sinh (g * l); nr_complex_t s11 = (z - y) * sinh (g * l) / n; nr_complex_t s21 = 2.0 / n; setS (NODE_1, NODE_1, s11); setS (NODE_2, NODE_2, s11); setS (NODE_1, NODE_2, s21); setS (NODE_2, NODE_1, s21); } void coaxline::initDC (void) { nr_double_t l = getPropertyDouble ("L"); nr_double_t d = getPropertyDouble ("d"); nr_double_t rho = getPropertyDouble ("rho"); if (d != 0.0 && rho != 0.0 && l != 0.0) { // a tiny resistance nr_double_t g = pi * sqr (d / 2) / rho / l; setVoltageSources (0); allocMatrixMNA (); setY (NODE_1, NODE_1, +g); setY (NODE_2, NODE_2, +g); setY (NODE_1, NODE_2, -g); setY (NODE_2, NODE_1, -g); } else { // a DC short setVoltageSources (1); setInternalVoltageSource (1); allocMatrixMNA (); voltageSource (VSRC_1, NODE_1, NODE_2); } } void coaxline::initAC (void) { setVoltageSources (0); allocMatrixMNA (); initCheck (); } void coaxline::calcAC (nr_double_t frequency) { nr_double_t l = getPropertyDouble ("L"); // calculate propagation constants calcPropagation (frequency); // calculate Y-parameters nr_complex_t g = nr_complex_t (alpha, beta); nr_complex_t y11 = coth (g * l) / zl; nr_complex_t y21 = -cosech (g * l) / zl; setY (NODE_1, NODE_1, y11); setY (NODE_2, NODE_2, y11); setY (NODE_1, NODE_2, y21); setY (NODE_2, NODE_1, y21); } void coaxline::calcNoiseAC (nr_double_t) { nr_double_t l = getPropertyDouble ("L"); if (l < 0) return; // calculate noise using Bosma's theorem nr_double_t T = getPropertyDouble ("Temp"); setMatrixN (4 * celsius2kelvin (T) / T0 * real (getMatrixY ())); } // properties PROP_REQ [] = { { "D", PROP_REAL, { 2.95e-3, PROP_NO_STR }, PROP_POS_RANGEX }, { "d", PROP_REAL, { 0.9e-3, PROP_NO_STR }, PROP_POS_RANGEX }, { "L", PROP_REAL, { 1500e-3, PROP_NO_STR }, PROP_NO_RANGE }, { "er", PROP_REAL, { 2.29, PROP_NO_STR }, PROP_RNGII (1, 100) }, { "mur", PROP_REAL, { 1, PROP_NO_STR }, PROP_RNGII (1, 100) }, { "tand", PROP_REAL, { 4e-4, PROP_NO_STR }, PROP_POS_RANGE }, { "rho", PROP_REAL, { 0.022e-6, PROP_NO_STR }, PROP_POS_RANGE }, PROP_NO_PROP }; PROP_OPT [] = { { "Temp", PROP_REAL, { 26.85, PROP_NO_STR }, PROP_MIN_VAL (K) }, PROP_NO_PROP }; struct define_t coaxline::cirdef = { "COAX", 2, PROP_COMPONENT, PROP_NO_SUBSTRATE, PROP_LINEAR, PROP_DEF };