/* * circularloop.cpp - Circular loop inductor class implementation * * Copyright (C) 2016 Andres Martinez-Mera * * This is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this package; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, * Boston, MA 02110-1301, USA. * */ #if HAVE_CONFIG_H # include #endif #include "component.h" #include "circularloop.h" #include "substrate.h" using namespace qucs; //------------------------------------------------------------------------ // References: // [1] I. Bahl, Fundamentals of RF and Microwave Transistor Amplifiers, John Wiley and Sons, 2009. //------------------------------------------------------------------------ circularloop::circularloop () : circuit (2) { type = CIR_CIRCULARLOOP; } //------------------------------------------------------------------ // This function calculates the ABCD matrix of the spiral inductance void circularloop::calcABCDparams(nr_double_t frequency) { nr_double_t Z0, ere, F, eta = 120.*pi; nr_double_t W = getPropertyDouble ("W");//Width nr_double_t a = getPropertyDouble ("a");//Radius substrate * subst = getSubstrate (); nr_double_t h = subst->getPropertyDouble ("h"); nr_double_t rho = subst->getPropertyDouble ("rho"); nr_double_t t = subst->getPropertyDouble ("t"); nr_double_t er = subst->getPropertyDouble ("er"); // [1] Page 127 if (W/h <= 1.) { F = 1./qucs::sqrt(1.+12.*h/W) + 0.041*(1.-W/h)*(1.-W/h); ere = (er+1.)/2. + F*(er-1.)/2.; Z0 = (eta/(2.*pi*qucs::sqrt(ere)))*std::log((8.*h/W) + 0.25*W/h); } else { F = 1./qucs::sqrt(1.+12.*h/W); ere = (er+1.)/2. + F*(er-1.)/2.; Z0 = (eta/qucs::sqrt(ere))*(1./((W/h) + 1.393 + 0.667*std::log(W/h + 1.444))); } // [1] Page 138 nr_double_t Kg = 0.57 - 0.145*qucs::log(W/h); nr_double_t K = 1.4 + 0.217*qucs::log(W/(5.*t));// Correction factor to include the effect of the current bunching at the corners nr_double_t L = 1.257e-12*(a*1e6)*(std::log(a/(W+t)) + 0.078)*Kg; nr_double_t Rs = rho/t; R = pi*a*K*Rs/(W+t);//Global variable, it is used for DC analysis nr_double_t C = 33.33e-16*pi*a*1e6*qucs::sqrt(ere)/Z0; //ABCD matrix ABCD = eye(2); ABCD.set(0,0, nr_complex_t(1-4*pi*pi*frequency*frequency*L*C, 2*pi*R*C*frequency)); ABCD.set(0,1, nr_complex_t(R, 2.*pi*L*frequency)); ABCD.set(1,0, nr_complex_t(-4*pi*pi*C*C*R*frequency*frequency, -8*pi*pi*pi*C*C*L*frequency*frequency*frequency + 4*pi*C*frequency)); ABCD.set(1,1, nr_complex_t(-4.*pi*pi*C*L*frequency*frequency+1., 2.*pi*C*R*frequency)); } void circularloop::calcSP (nr_double_t frequency) { calcABCDparams(frequency); matrix Stmp = qucs::atos(ABCD, z0, z0); setMatrixS(Stmp); } void circularloop::calcNoiseSP (nr_double_t) { // calculate noise using Bosma's theorem nr_double_t T = getPropertyDouble ("Temp"); matrix s = getMatrixS (); matrix e = eye (getSize ()); setMatrixN (celsius2kelvin (T) / T0 * (e - s * transpose (conj (s)))); } void circularloop::initDC (void) { allocMatrixMNA (); if (R != 0.0) { nr_double_t g = 1.0 / R; setVoltageSources (0); allocMatrixMNA (); setY (NODE_1, NODE_1, +g); setY (NODE_2, NODE_2, +g); setY (NODE_1, NODE_2, -g); setY (NODE_2, NODE_1, -g); } // for zero resistances create a zero voltage source else { setVoltageSources (1); setInternalVoltageSource (1); allocMatrixMNA (); voltageSource (VSRC_1, NODE_1, NODE_2); } } void circularloop::initAC (void) { setVoltageSources (0); allocMatrixMNA (); } void circularloop::initSP(void) { allocMatrixS (); } void circularloop::calcAC (nr_double_t frequency) { calcABCDparams(frequency); nr_complex_t y11 = ABCD.get(1,1)/ABCD.get(0,1); nr_complex_t y12 = -det(ABCD)/ABCD.get(0,1); nr_complex_t y21 = -1./ABCD.get(0,1); nr_complex_t y22 = ABCD.get(0,0)/ABCD.get(0,1); setY (NODE_1, NODE_1, y11); setY (NODE_2, NODE_2, y22); setY (NODE_1, NODE_2, y12); setY (NODE_2, NODE_1, y21); } void circularloop::calcNoiseAC (nr_double_t) { // calculate noise using Bosma's theorem nr_double_t T = getPropertyDouble ("Temp"); setMatrixN (4 * celsius2kelvin (T) / T0 * real (getMatrixY ())); } // properties PROP_REQ [] = { { "Subst", PROP_STR, { PROP_NO_VAL, "Subst1" }, PROP_NO_RANGE }, { "W", PROP_REAL, { 25e-6, PROP_NO_STR }, PROP_POS_RANGE }, { "a", PROP_REAL, { 200e-6, PROP_NO_STR }, PROP_POS_RANGE }, PROP_NO_PROP }; PROP_OPT [] = { { "Temp", PROP_REAL, { 26.85, PROP_NO_STR }, PROP_MIN_VAL (K) }, PROP_NO_PROP }; struct define_t circularloop::cirdef = { "CIRCULARLOOP", 2, PROP_COMPONENT, PROP_NO_SUBSTRATE, PROP_LINEAR, PROP_DEF };