/* * mscross.cpp - microstrip cross-junction class implementation * * Copyright (C) 2004, 2007, 2008 Stefan Jahn * * This is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this package; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, * Boston, MA 02110-1301, USA. * * $Id$ * */ #if HAVE_CONFIG_H # include #endif #include "component.h" #include "substrate.h" #include "msline.h" #include "mscross.h" using namespace qucs; mscross::mscross () : circuit (6) { type = CIR_MSCROSS; } void mscross::initModel (void) { setNode (NODE_5, createInternal (getName (), "i13")); setNode (NODE_6, createInternal (getName (), "i24")); } void mscross::initSP (void) { initModel (); allocMatrixS (); } void mscross::calcSP (nr_double_t frequency) { setMatrixS (ytos (calcMatrixY (frequency))); } void mscross::initDC (void) { initModel (); setVoltageSources (5); allocMatrixMNA (); voltageSource (VSRC_1, NODE_1, NODE_5); voltageSource (VSRC_2, NODE_3, NODE_5); voltageSource (VSRC_3, NODE_2, NODE_6); voltageSource (VSRC_4, NODE_4, NODE_6); voltageSource (VSRC_5, NODE_5, NODE_6); } void mscross::initAC (void) { initModel (); setVoltageSources (0); allocMatrixMNA (); } void mscross::calcAC (nr_double_t frequency) { setMatrixY (calcMatrixY (frequency)); } nr_double_t mscross::capCorrection (nr_double_t W, nr_double_t f) { substrate * subst = getSubstrate (); nr_double_t er = subst->getPropertyDouble ("er"); nr_double_t h = subst->getPropertyDouble ("h"); nr_double_t t = subst->getPropertyDouble ("t"); const char * SModel = getPropertyString ("MSModel"); const char * DModel = getPropertyString ("MSDispModel"); nr_double_t Zl1, Er1, Zl2, Er2; nr_double_t ZlEff, ErEff, WEff; msline::analyseQuasiStatic (W, h, t, 9.9, SModel, ZlEff, ErEff, WEff); msline::analyseDispersion (W, h, 9.9, ZlEff, ErEff, f, DModel, Zl1, Er1); msline::analyseQuasiStatic (W, h, t, er, SModel, ZlEff, ErEff, WEff); msline::analyseDispersion (W, h, er, ZlEff, ErEff, f, DModel, Zl2, Er2); return Zl1 / Zl2 * qucs::sqrt (Er2 / Er1); } nr_double_t mscross::calcCap (nr_double_t W1, nr_double_t h, nr_double_t W2) { nr_double_t W1h = W1 / h; nr_double_t W2h = W2 / h; nr_double_t X = qucs::log10 (W1h) * (86.6 * W2h - 30.9 * qucs::sqrt (W2h) + 367) + cubic (W2h) + 74 * W2h + 130; return 1e-12 * W1 * (0.25 * X * qucs::pow (W1h, -1.0 / 3.0) - 60 + 1 / W2h / 2 - 0.375 * W1h * (1 - W2h)); } nr_double_t mscross::calcInd (nr_double_t W1, nr_double_t h, nr_double_t W2) { nr_double_t W1h = W1 / h; nr_double_t W2h = W2 / h; nr_double_t Y = 165.6 * W2h + 31.2 * qucs::sqrt (W2h) - 11.8 * sqr (W2h); return 1e-9 * h * (Y * W1h - 32 * W2h + 3) * qucs::pow (W1h, -1.5); } matrix mscross::calcMatrixY (nr_double_t f) { nr_double_t W1 = getPropertyDouble ("W1"); nr_double_t W2 = getPropertyDouble ("W2"); nr_double_t W3 = getPropertyDouble ("W3"); nr_double_t W4 = getPropertyDouble ("W4"); substrate * subst = getSubstrate (); nr_double_t h = subst->getPropertyDouble ("h"); nr_double_t W1h = (W1 + W3) / 2 / h; nr_double_t W2h = (W2 + W4) / 2 / h; nr_double_t C1, C2, C3, C4, L1, L2, L3, L4, L5; // apply asymmetric modifications of original model C1 = calcCap (W1, h, (W2 + W4) / 2); C2 = calcCap (W2, h, (W1 + W3) / 2); C3 = calcCap (W3, h, (W4 + W2) / 2); C4 = calcCap (W4, h, (W3 + W1) / 2); L1 = calcInd (W1, h, (W2 + W4) / 2); L2 = calcInd (W2, h, (W1 + W3) / 2); L3 = calcInd (W3, h, (W4 + W2) / 2); L4 = calcInd (W4, h, (W3 + W1) / 2); L5 = 1e-9 * h * (5 * W2h * qucs::cos (pi / 2 * (1.5 - W1h)) - (1 + 7 / W1h ) / W2h - 337.5); // center inductance correction L5 = L5 * 0.8; // capacitance corrections C1 = C1 * capCorrection (W1, f); C2 = C2 * capCorrection (W2, f); C3 = C3 * capCorrection (W3, f); C4 = C4 * capCorrection (W4, f); // compute admittance matrix nr_double_t o = 2 * pi * f; nr_complex_t yc1 = nr_complex_t (0, o * C1); nr_complex_t yc2 = nr_complex_t (0, o * C2); nr_complex_t yc3 = nr_complex_t (0, o * C3); nr_complex_t yc4 = nr_complex_t (0, o * C4); nr_complex_t yl1 = 1.0 / nr_complex_t (0, o * L1); nr_complex_t yl2 = 1.0 / nr_complex_t (0, o * L2); nr_complex_t yl3 = 1.0 / nr_complex_t (0, o * L3); nr_complex_t yl4 = 1.0 / nr_complex_t (0, o * L4); nr_complex_t yl5 = 1.0 / nr_complex_t (0, o * L5); matrix Y (6); Y.set (NODE_1, NODE_1, yl1 + yc1); Y.set (NODE_2, NODE_2, yl2 + yc2); Y.set (NODE_3, NODE_3, yl3 + yc3); Y.set (NODE_4, NODE_4, yl4 + yc4); Y.set (NODE_1, NODE_5, -yl1); Y.set (NODE_5, NODE_1, -yl1); Y.set (NODE_3, NODE_5, -yl3); Y.set (NODE_5, NODE_3, -yl3); Y.set (NODE_2, NODE_6, -yl2); Y.set (NODE_6, NODE_2, -yl2); Y.set (NODE_4, NODE_6, -yl4); Y.set (NODE_6, NODE_4, -yl4); Y.set (NODE_5, NODE_6, -yl5); Y.set (NODE_6, NODE_5, -yl5); Y.set (NODE_5, NODE_5, yl1 + yl3 + yl5); Y.set (NODE_6, NODE_6, yl2 + yl4 + yl5); return Y; } void mscross::initTR (void) { initDC (); } // properties PROP_REQ [] = { { "W1", PROP_REAL, { 1e-3, PROP_NO_STR }, PROP_POS_RANGE }, { "W2", PROP_REAL, { 2e-3, PROP_NO_STR }, PROP_POS_RANGE }, { "W3", PROP_REAL, { 1e-3, PROP_NO_STR }, PROP_POS_RANGE }, { "W4", PROP_REAL, { 2e-3, PROP_NO_STR }, PROP_POS_RANGE }, { "Subst", PROP_STR, { PROP_NO_VAL, "Subst1" }, PROP_NO_RANGE }, { "MSDispModel", PROP_STR, { PROP_NO_VAL, "Kirschning" }, PROP_RNG_DIS }, { "MSModel", PROP_STR, { PROP_NO_VAL, "Hammerstad" }, PROP_RNG_MOD }, PROP_NO_PROP }; PROP_OPT [] = { PROP_NO_PROP }; struct define_t mscross::cirdef = { "MCROSS", 4, PROP_COMPONENT, PROP_NO_SUBSTRATE, PROP_LINEAR, PROP_DEF };