/* * mslange.cpp - parallel coupled microstrip lines class implementation * * Copyright (C) 2004, 2005, 2006, 2008 Stefan Jahn * * This is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this package; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, * Boston, MA 02110-1301, USA. * * $Id: mslange.cpp,v 1.25 2008/10/07 20:15:33 ela Exp $ * */ #if HAVE_CONFIG_H # include #endif #include "component.h" #include "substrate.h" #include "msline.h" #include "mslange.h" using namespace qucs; mslange::mslange () : circuit (4) { type = CIR_MSLANGE; } void mslange::calcPropagation (nr_double_t frequency) { // fetch line properties nr_double_t W = getPropertyDouble ("W"); nr_double_t s = getPropertyDouble ("S"); const char * const SModel = getPropertyString ("Model"); const char * const DModel = getPropertyString ("DispModel"); // fetch substrate properties substrate * subst = getSubstrate (); nr_double_t er = subst->getPropertyDouble ("er"); nr_double_t h = subst->getPropertyDouble ("h"); nr_double_t t = subst->getPropertyDouble ("t"); nr_double_t tand = subst->getPropertyDouble ("tand"); nr_double_t rho = subst->getPropertyDouble ("rho"); nr_double_t D = subst->getPropertyDouble ("D"); // quasi-static analysis nr_double_t Zle, ErEffe, Zlo, ErEffo; analysQuasiStatic (W, h, s, t, er, SModel, Zle, Zlo, ErEffe, ErEffo); // analyse dispersion of Zl and Er nr_double_t ZleFreq, ErEffeFreq, ZloFreq, ErEffoFreq; analyseDispersion (W, h, s, er, Zle, Zlo, ErEffe, ErEffo, frequency, DModel, ZleFreq, ZloFreq, ErEffeFreq, ErEffoFreq); // analyse losses of line nr_double_t ace, aco, ade, ado; msline::analyseLoss (W, t, er, rho, D, tand, Zle, Zlo, ErEffe, frequency, "Hammerstad", ace, ade); msline::analyseLoss (W, t, er, rho, D, tand, Zlo, Zle, ErEffo, frequency, "Hammerstad", aco, ado); // compute propagation constants for even and odd mode nr_double_t k0 = 2 * pi * frequency / C0; ae = ace + ade; ao = aco + ado; be = qucs::sqrt (ErEffeFreq) * k0; bo = qucs::sqrt (ErEffoFreq) * k0; ze = ZleFreq; zo = ZloFreq; ee = ErEffeFreq; eo = ErEffoFreq; } void mslange::saveCharacteristics (nr_double_t) { setCharacteristic ("ZlEven", ze); setCharacteristic ("ErEven", ee); setCharacteristic ("ZlOdd", zo); setCharacteristic ("ErOdd", eo); } void mslange::calcSP (nr_double_t frequency) { // fetch line properties nr_double_t l = getPropertyDouble ("L"); // compute propagation constants for even and odd mode calcPropagation (frequency); nr_complex_t ge = nr_complex_t (ae, be); nr_complex_t go = nr_complex_t (ao, bo); // compute abbreviations nr_complex_t Ee, Eo, De, Do, Xe, Xo, Ye, Yo; Ee = (sqr (ze) + sqr (z0)) * qucs::sinh (ge * l); Eo = (sqr (zo) + sqr (z0)) * qucs::sinh (go * l); De = 2 * ze * z0 * cosh (ge * l) + Ee; Do = 2 * zo * z0 * cosh (go * l) + Eo; Xe = (sqr (ze) - sqr (z0)) * qucs::sinh (ge * l) / 2.0 / De; Xo = (sqr (zo) - sqr (z0)) * qucs::sinh (go * l) / 2.0 / Do; Ye = ze * z0 / De; Yo = zo * z0 / Do; // reflexion coefficients setS (NODE_1, NODE_1, Xe + Xo); setS (NODE_2, NODE_2, Xe + Xo); setS (NODE_3, NODE_3, Xe + Xo); setS (NODE_4, NODE_4, Xe + Xo); // through paths setS (NODE_1, NODE_2, Ye + Yo); setS (NODE_2, NODE_1, Ye + Yo); setS (NODE_3, NODE_4, Ye + Yo); setS (NODE_4, NODE_3, Ye + Yo); // coupled paths setS (NODE_1, NODE_4, Xe - Xo); setS (NODE_4, NODE_1, Xe - Xo); setS (NODE_2, NODE_3, Xe - Xo); setS (NODE_3, NODE_2, Xe - Xo); // isolated paths setS (NODE_1, NODE_3, Ye - Yo); setS (NODE_3, NODE_1, Ye - Yo); setS (NODE_2, NODE_4, Ye - Yo); setS (NODE_4, NODE_2, Ye - Yo); } void mslange::calcNoiseSP (nr_double_t) { // calculate noise using Bosma's theorem nr_double_t T = getPropertyDouble ("Temp"); matrix s = getMatrixS (); matrix e = eye (getSize ()); setMatrixN (celsius2kelvin (T) / T0 * (e - s * transpose (conj (s)))); } /* The function calculates the quasi-static dielectric constants and characteristic impedances for the even and odd mode based upon the given line and substrate properties for parallel coupled microstrip lines. */ void mslange::analysQuasiStatic (nr_double_t W, nr_double_t h, nr_double_t s, nr_double_t t, nr_double_t er, const char * const SModel, nr_double_t& Zle, nr_double_t& Zlo, nr_double_t& ErEffe, nr_double_t& ErEffo) { // initialize default return values ErEffe = ErEffo = er; Zlo = 42.2; Zle = 55.7; // normalized width and gap nr_double_t u = W / h; nr_double_t g = s / h; // HAMMERSTAD and JENSEN if (!strcmp (SModel, "Hammerstad")) { nr_double_t Zl1, Fe, Fo, a, b, fo, Mu, Alpha, Beta, ErEff; nr_double_t Pe, Po, r, fo1, q, p, n, Psi, Phi, m, Theta; // modifying equations for even mode m = 0.2175 + qucs::pow (4.113 + qucs::pow (20.36 / g, 6.), -0.251) + qucs::log (qucs::pow (g, 10.) / (1 + qucs::pow (g / 13.8, 10.))) / 323; Alpha = 0.5 * qucs::exp (-g); Psi = 1 + g / 1.45 + qucs::pow (g, 2.09) / 3.95; Phi = 0.8645 * qucs::pow (u, 0.172); Pe = Phi / (Psi * (Alpha * qucs::pow (u, m) + (1 - Alpha) * qucs::pow (u, -m))); // TODO: is this ... Psi * (Alpha ... or ... Psi / (Alpha ... ? // modifying equations for odd mode n = (1 / 17.7 + qucs::exp (-6.424 - 0.76 * qucs::log (g) - qucs::pow (g / 0.23, 5.))) * qucs::log ((10 + 68.3 * sqr (g)) / (1 + 32.5 * qucs::pow (g, 3.093))); Beta = 0.2306 + qucs::log (qucs::pow (g, 10.) / (1 + qucs::pow (g / 3.73, 10.))) / 301.8 + qucs::log (1 + 0.646 * qucs::pow (g, 1.175)) / 5.3; Theta = 1.729 + 1.175 * qucs::log (1 + 0.627 / (g + 0.327 * qucs::pow (g, 2.17))); Po = Pe - Theta / Psi * qucs::exp (Beta * qucs::pow (u, -n) * qucs::log (u)); // further modifying equations r = 1 + 0.15 * (1 - qucs::exp (1 - sqr (er - 1) / 8.2) / (1 + qucs::pow (g, -6.))); fo1 = 1 - qucs::exp (-0.179 * qucs::pow (g, 0.15) - 0.328 * qucs::pow (g, r) / qucs::log (euler + qucs::pow (g / 7, 2.8))); q = qucs::exp (-1.366 - g); p = qucs::exp (-0.745 * qucs::pow (g, 0.295)) / qucs::cosh (qucs::pow (g, 0.68)); fo = fo1 * qucs::exp (p * qucs::log (u) + q * qucs::sin (pi * qucs::log10 (u))); Mu = g * qucs::exp (-g) + u * (20 + sqr (g)) / (10 + sqr (g)); msline::Hammerstad_ab (Mu, er, a, b); Fe = qucs::pow (1 + 10 / Mu, -a * b); msline::Hammerstad_ab (u, er, a, b); Fo = fo * qucs::pow (1 + 10 / u, -a * b); // finally compute effective dielectric constants and impedances ErEffe = (er + 1) / 2 + (er - 1) / 2 * Fe; ErEffo = (er + 1) / 2 + (er - 1) / 2 * Fo; msline::Hammerstad_er (u, er, a, b, ErEff); // single microstrip // first variant Zl1 = Z0 / (u + 1.98 * qucs::pow (u, 0.172)); Zl1 /= qucs::sqrt (ErEff); // second variant msline::Hammerstad_zl (u, Zl1); Zl1 /= qucs::sqrt (ErEff); Zle = Zl1 / (1 - Zl1 * Pe / Z0); Zlo = Zl1 / (1 - Zl1 * Po / Z0); } // KIRSCHNING and JANSEN else if (!strcmp (SModel, "Kirschning")) { nr_double_t a, b, ae, be, ao, bo, v, co, d, ErEff, Zl1; nr_double_t q1, q2, q3, q4, q5, q6, q7, q8, q9, q10; // consider effect of finite strip thickness (JANSEN only) nr_double_t ue = u; nr_double_t uo = u; if (t != 0 && s > 10 * (2 * t)) { nr_double_t dW = 0; // SCHNEIDER, referred by JANSEN if (u >= one_over_pi / 2 && one_over_pi / 2 > 2 * t / h) dW = t * (1 + qucs::log (2 * h / t)) / pi; else if (W > 2 * t) dW = t * (1 + qucs::log (4 * pi * W / t)) / pi; // JANSEN nr_double_t dt = 2 * t * h / s / er; nr_double_t We = W + dW * (1 - 0.5 * qucs::exp (-0.69 * dW / dt)); nr_double_t Wo = We + dt; ue = We / h; uo = Wo / h; } // even relative dielectric constant v = ue * (20 + sqr (g)) / (10 + sqr (g)) + g * qucs::exp (-g); msline::Hammerstad_ab (v, er, ae, be); msline::Hammerstad_er (v, er, ae, be, ErEffe); // odd relative dielectric constant msline::Hammerstad_ab (uo, er, a, b); msline::Hammerstad_er (uo, er, a, b, ErEff); d = 0.593 + 0.694 * qucs::exp (-0.562 * uo); bo = 0.747 * er / (0.15 + er); co = bo - (bo - 0.207) * qucs::exp (-0.414 * uo); ao = 0.7287 * (ErEff - (er + 1) / 2) * (1 - qucs::exp (-0.179 * uo)); ErEffo = ((er + 1) / 2 + ao - ErEff) * qucs::exp (-co * qucs::pow (g, d)) + ErEff; // characteristic impedance of single line msline::Hammerstad_zl (u, Zl1); Zl1 /= qucs::sqrt (ErEff); // even characteristic impedance q1 = 0.8695 * qucs::pow (ue, 0.194); q2 = 1 + 0.7519 * g + 0.189 * qucs::pow (g, 2.31); q3 = 0.1975 + qucs::pow (16.6 + qucs::pow (8.4 / g, 6.), -0.387) + qucs::log (qucs::pow (g, 10.) / (1 + qucs::pow (g / 3.4, 10.))) / 241; q4 = q1 / q2 * 2 / (qucs::exp (-g) * qucs::pow (ue, q3) + (2 - qucs::exp (-g)) * qucs::pow (ue, -q3)); Zle = qucs::sqrt (ErEff / ErEffe) * Zl1 / (1 - Zl1 * qucs::sqrt (ErEff) * q4 / Z0); // odd characteristic impedance q5 = 1.794 + 1.14 * qucs::log (1 + 0.638 / (g + 0.517 * qucs::pow (g, 2.43))); q6 = 0.2305 + qucs::log (qucs::pow (g, 10.) / (1 + qucs::pow (g / 5.8, 10.))) / 281.3 + qucs::log (1 + 0.598 * qucs::pow (g, 1.154)) / 5.1; q7 = (10 + 190 * sqr (g)) / (1 + 82.3 * cubic (g)); q8 = qucs::exp (-6.5 - 0.95 * qucs::log (g) - qucs::pow (g / 0.15, 5.)); q9 = qucs::log (q7) * (q8 + 1 / 16.5); q10 = (q2 * q4 - q5 * qucs::exp (qucs::log (uo) * q6 * qucs::pow (uo, -q9))) / q2; Zlo = qucs::sqrt (ErEff / ErEffo) * Zl1 / (1 - Zl1 * qucs::sqrt (ErEff) * q10 / Z0); } // nr_double_t Zle4, Zlo4, C, Z04; Zle = ((Zlo+Zle)/(3*Zlo+Zle))*Zle; //Pozar - Microwave engineering: eq 7.79a Zlo = ((Zlo+Zle)/(3*Zle+Zlo))*Zlo; //Pozar - Microwave engineering: eq 7.79b } /* The function computes the dispersion effects on the dielectric constants and characteristic impedances for the even and odd mode of parallel coupled microstrip lines. */ void mslange::analyseDispersion (nr_double_t W, nr_double_t h, nr_double_t s, nr_double_t er, nr_double_t Zle, nr_double_t Zlo, nr_double_t ErEffe, nr_double_t ErEffo, nr_double_t frequency, const char * const DModel, nr_double_t& ZleFreq, nr_double_t& ZloFreq, nr_double_t& ErEffeFreq, nr_double_t& ErEffoFreq) { // initialize default return values ZleFreq = Zle; ErEffeFreq = ErEffe; ZloFreq = Zlo; ErEffoFreq = ErEffo; // normalized width and gap nr_double_t u = W / h; nr_double_t g = s / h; // GETSINGER if (!strcmp (DModel, "Getsinger")) { // even mode dispersion msline::Getsinger_disp (h, er, ErEffe, Zle / 2, frequency, ErEffeFreq, ZleFreq); ZleFreq *= 2; // odd mode dispersion msline::Getsinger_disp (h, er, ErEffo, Zlo * 2, frequency, ErEffoFreq, ZloFreq); ZloFreq /= 2; } // KIRSCHNING and JANSEN else if (!strcmp (DModel, "Kirschning")) { nr_double_t p1, p2, p3, p4, p5, p6, p7, Fe; nr_double_t fn = frequency * h * 1e-6; // even relative dielectric constant dispersion p1 = 0.27488 * (0.6315 + 0.525 / qucs::pow (1 + 0.0157 * fn, 20.)) * u - 0.065683 * qucs::exp (-8.7513 * u); p2 = 0.33622 * (1 - qucs::exp (-0.03442 * er)); p3 = 0.0363 * qucs::exp (-4.6 * u) * (1 - qucs::exp (- qucs::pow (fn / 38.7, 4.97))); p4 = 1 + 2.751 * (1 - qucs::exp (- qucs::pow (er / 15.916, 8.))); p5 = 0.334 * qucs::exp (-3.3 * cubic (er / 15)) + 0.746; p6 = p5 * qucs::exp (- qucs::pow (fn / 18, 0.368)); p7 = 1 + 4.069 * p6 * qucs::pow (g, 0.479) * qucs::exp (-1.347 * qucs::pow (g, 0.595) - 0.17 * qucs::pow (g, 2.5)); Fe = p1 * p2 * qucs::pow ((p3 * p4 + 0.1844 * p7) * fn, 1.5763); ErEffeFreq = er - (er - ErEffe) / (1 + Fe); // odd relative dielectric constant dispersion nr_double_t p8, p9, p10, p11, p12, p13, p14, p15, Fo; p8 = 0.7168 * (1 + 1.076 / (1 + 0.0576 * (er - 1))); p9 = p8 - 0.7913 * (1 - qucs::exp (- qucs::pow (fn / 20, 1.424))) * qucs::atan (2.481 * qucs::pow (er / 8, 0.946)); p10 = 0.242 * qucs::pow (er - 1, 0.55); p11 = 0.6366 * (qucs::exp (-0.3401 * fn) - 1) * qucs::atan (1.263 * qucs::pow (u / 3, 1.629)); p12 = p9 + (1 - p9) / (1 + 1.183 * qucs::pow (u, 1.376)); p13 = 1.695 * p10 / (0.414 + 1.605 * p10); p14 = 0.8928 + 0.1072 * (1 - qucs::exp (-0.42 * qucs::pow (fn / 20, 3.215))); p15 = fabs (1 - 0.8928 * (1 + p11) * qucs::exp (-p13 * qucs::pow (g, 1.092)) * p12 / p14); Fo = p1 * p2 * qucs::pow ((p3 * p4 + 0.1844) * fn * p15, 1.5763); ErEffoFreq = er - (er - ErEffo) / (1 + Fo); // dispersion of even characteristic impedance nr_double_t t, q11, q12, q13, q14, q15, q16, q17, q18, q19, q20, q21; q11 = 0.893 * (1 - 0.3 / (1 + 0.7 * (er - 1))); t = qucs::pow (fn / 20, 4.91); q12 = 2.121 * t / (1 + q11 * t) * qucs::exp (-2.87 * g) * qucs::pow (g, 0.902); q13 = 1 + 0.038 * qucs::pow (er / 8, 5.1); t = quadr (er / 15); q14 = 1 + 1.203 * t / (1 + t); q15 = 1.887 * qucs::exp (-1.5 * qucs::pow (g, 0.84)) * qucs::pow (g, q14) / (1 + 0.41 * qucs::pow (fn / 15, 3.) * qucs::pow (u, 2 / q13) / (0.125 + qucs::pow (u, 1.626 / q13))); q16 = q15 * (1 + 9 / (1 + 0.403 * sqr (er - 1))); q17 = 0.394 * (1 - qucs::exp (-1.47 * qucs::pow (u / 7, 0.672))) * (1 - qucs::exp (-4.25 * qucs::pow (fn / 20, 1.87))); q18 = 0.61 * (1 - qucs::exp (-2.31 * qucs::pow (u / 8, 1.593))) / (1 + 6.544 * qucs::pow (g, 4.17)); q19 = 0.21 * quadr (g) / (1 + 0.18 * qucs::pow (g, 4.9)) / (1 + 0.1 * sqr (u)) / (1 + qucs::pow (fn / 24, 3.)); q20 = q19 * (0.09 + 1 / (1 + 0.1 * qucs::pow (er - 1, 2.7))); t = qucs::pow (u, 2.5); q21 = fabs (1 - 42.54 * qucs::pow (g, 0.133) * qucs::exp (-0.812 * g) * t / (1 + 0.033 * t)); nr_double_t re, qe, pe, de, Ce, q0, ZlFreq, ErEffFreq; msline::Kirschning_er (u, fn, er, ErEffe, ErEffFreq); msline::Kirschning_zl (u, fn, er, ErEffe, ErEffFreq, Zle, q0, ZlFreq); re = qucs::pow (fn / 28.843, 12.); qe = 0.016 + qucs::pow (0.0514 * er * q21, 4.524); pe = 4.766 * qucs::exp (-3.228 * qucs::pow (u, 0.641)); t = qucs::pow (er - 1, 6.); de = 5.086 * qe * re / (0.3838 + 0.386 * qe) * qucs::exp (-22.2 * qucs::pow (u, 1.92)) / (1 + 1.2992 * re) * t / (1 + 10 * t); Ce = 1 + 1.275 * (1 - qucs::exp (-0.004625 * pe * qucs::pow (er, 1.674) * qucs::pow (fn / 18.365, 2.745))) - q12 + q16 - q17 + q18 + q20; ZleFreq = Zle * qucs::pow ((0.9408 * qucs::pow (ErEffFreq, Ce) - 0.9603) / ((0.9408 - de) * qucs::pow (ErEffe, Ce) - 0.9603), q0); // dispersion of odd characteristic impedance nr_double_t q22, q23, q24, q25, q26, q27, q28, q29; msline::Kirschning_er (u, fn, er, ErEffo, ErEffFreq); msline::Kirschning_zl (u, fn, er, ErEffo, ErEffFreq, Zlo, q0, ZlFreq); q29 = 15.16 / (1 + 0.196 * sqr (er - 1)); t = sqr (er - 1); q25 = 0.3 * sqr (fn) / (10 + sqr (fn)) * (1 + 2.333 * t / (5 + t)); t = qucs::pow ((er - 1) / 13, 12.); q26 = 30 - 22.2 * t / (1 + 3 * t) - q29; t = qucs::pow (er - 1, 1.5); q27 = 0.4 * qucs::pow (g, 0.84) * (1 + 2.5 * t / (5 + t)); t = qucs::pow (er - 1, 3.); q28 = 0.149 * t / (94.5 + 0.038 * t); q22 = 0.925 * qucs::pow (fn / q26, 1.536) / (1 + 0.3 * qucs::pow (fn / 30, 1.536)); q23 = 1 + 0.005 * fn * q27 / (1 + 0.812 * qucs::pow (fn / 15, 1.9)) / (1 + 0.025 * sqr (u)); t = qucs::pow (u, 0.894); q24 = 2.506 * q28 * t / (3.575 + t) * qucs::pow ((1 + 1.3 * u) * fn / 99.25, 4.29); ZloFreq = ZlFreq + (Zlo * qucs::pow (ErEffoFreq / ErEffo, q22) - ZlFreq * q23) / (1 + q24 + qucs::pow (0.46 * g, 2.2) * q25); } } void mslange::initDC (void) { nr_double_t l = getPropertyDouble ("L"); nr_double_t W = getPropertyDouble ("W")/2; substrate * subst = getSubstrate (); nr_double_t t = subst->getPropertyDouble ("t"); nr_double_t rho = subst->getPropertyDouble ("rho"); if (t != 0.0 && rho != 0.0) { // tiny resistances nr_double_t g = t * W / rho / l; setVoltageSources (0); allocMatrixMNA (); setY (NODE_1, NODE_1, +g); setY (NODE_2, NODE_2, +g); setY (NODE_1, NODE_2, -g); setY (NODE_2, NODE_1, -g); setY (NODE_3, NODE_3, +g); setY (NODE_4, NODE_4, +g); setY (NODE_3, NODE_4, -g); setY (NODE_4, NODE_3, -g); } else { // DC shorts (voltage sources V = 0 volts) setVoltageSources (2); setInternalVoltageSource (1); allocMatrixMNA (); clearY (); voltageSource (VSRC_1, NODE_1, NODE_2); voltageSource (VSRC_2, NODE_3, NODE_4); setD (VSRC_1, VSRC_2, 0.0); setD (VSRC_2, VSRC_1, 0.0); } } void mslange::initAC (void) { setVoltageSources (0); allocMatrixMNA (); } void mslange::calcAC (nr_double_t frequency) { // fetch line properties nr_double_t l = getPropertyDouble ("L"); // compute propagation constants for even and odd mode calcPropagation (frequency); nr_complex_t ge = nr_complex_t (ae, be); nr_complex_t go = nr_complex_t (ao, bo); // compute abbreviations nr_complex_t De, Do, y1, y2, y3, y4; De = 0.5 / (ze * qucs::sinh (ge * l)); Do = 0.5 / (zo * qucs::sinh (go * l)); y2 = -De - Do; y3 = -De + Do; De *= cosh (ge * l); Do *= cosh (go * l); y1 = De + Do; y4 = De - Do; // store Y-parameters setY (NODE_1, NODE_1, y1); setY (NODE_2, NODE_2, y1); setY (NODE_3, NODE_3, y1); setY (NODE_4, NODE_4, y1); setY (NODE_1, NODE_2, y2); setY (NODE_2, NODE_1, y2); setY (NODE_3, NODE_4, y2); setY (NODE_4, NODE_3, y2); setY (NODE_1, NODE_3, y3); setY (NODE_2, NODE_4, y3); setY (NODE_3, NODE_1, y3); setY (NODE_4, NODE_2, y3); setY (NODE_1, NODE_4, y4); setY (NODE_2, NODE_3, y4); setY (NODE_3, NODE_2, y4); setY (NODE_4, NODE_1, y4); } void mslange::calcNoiseAC (nr_double_t) { // calculate noise using Bosma's theorem nr_double_t T = getPropertyDouble ("Temp"); setMatrixN (4 * celsius2kelvin (T) / T0 * real (getMatrixY ())); } // properties PROP_REQ [] = { { "W", PROP_REAL, { 1e-3, PROP_NO_STR }, PROP_POS_RANGE }, { "L", PROP_REAL, { 10e-3, PROP_NO_STR }, PROP_POS_RANGE }, { "S", PROP_REAL, { 1e-3, PROP_NO_STR }, PROP_POS_RANGE }, { "Subst", PROP_STR, { PROP_NO_VAL, "Subst1" }, PROP_NO_RANGE }, { "Model", PROP_STR, { PROP_NO_VAL, "Kirschning" }, PROP_RNG_STR2 ("Kirschning", "Hammerstad") }, { "DispModel", PROP_STR, { PROP_NO_VAL, "Kirschning" }, PROP_RNG_STR2 ("Kirschning", "Getsinger") }, PROP_NO_PROP }; PROP_OPT [] = { { "Temp", PROP_REAL, { 26.85, PROP_NO_STR }, PROP_MIN_VAL (K) }, PROP_NO_PROP }; struct define_t mslange::cirdef = { "MLANGE", 4, PROP_COMPONENT, PROP_NO_SUBSTRATE, PROP_LINEAR, PROP_DEF };