#FIG 3.2 Produced by xfig version 3.2.5-alpha5 Landscape Center Metric A4 100.00 Single -2 1200 2 6 1215 1080 4815 1980 2 4 0 2 0 7 50 -1 -1 0.000 0 0 7 0 0 5 4770 1935 4770 1125 1260 1125 1260 1935 4770 1935 4 0 0 50 -1 0 12 0.0000 0 180 1215 1350 1350 prepare netlist:\001 4 0 0 50 -1 0 12 0.0000 0 180 1395 1350 1575 assign node and\001 4 0 0 50 -1 0 12 0.0000 0 180 3240 1350 1800 voltage source (built-in / real) numbers\001 -6 6 8820 5940 12285 7515 2 4 0 2 0 7 50 -1 -1 0.000 0 0 7 0 0 5 12240 7470 12240 5985 8865 5985 8865 7470 12240 7470 4 0 0 50 -1 0 12 0.0000 0 180 3105 8955 6210 choose a fallback convergence helper:\001 4 0 0 50 -1 0 12 0.0000 0 135 1440 8955 6435 RHS attenuation\001 4 0 0 50 -1 0 12 0.0000 0 180 1395 8955 6660 steepest descent\001 4 0 0 50 -1 0 12 0.0000 0 0 90 8955 7110 \001 4 0 0 50 -1 0 12 0.0000 0 135 960 8955 6885 line search\001 4 0 0 50 -1 0 12 0.0000 0 180 1290 8955 7110 gMin stepping\001 4 0 0 50 -1 0 12 0.0000 0 180 1365 8955 7335 source stepping\001 -6 6 9225 4230 11700 5400 2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 0 0 5 10440 4275 9270 4815 10440 5355 11655 4770 10440 4275 4 1 0 50 -1 0 12 0.0000 0 135 1545 10440 4770 maximum iteration\001 4 1 0 50 -1 0 12 0.0000 0 135 1275 10440 4995 count reached ?\001 -6 6 9405 7875 11475 8730 2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 0 0 5 10395 7920 9450 8325 10395 8685 11430 8325 10395 7920 4 1 0 50 -1 0 12 0.0000 0 135 1245 10440 8370 a fallback left ?\001 -6 6 9225 1665 11565 2340 2 4 0 2 0 7 50 -1 -1 0.000 0 0 7 0 0 5 11520 2295 11520 1710 9270 1710 9270 2295 11520 2295 4 1 0 50 -1 0 12 0.0000 0 180 2010 10395 2160 apply fallback algorithm\001 4 1 0 50 -1 0 12 0.0000 0 135 1620 10395 1935 restart NR iterations\001 -6 2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 0 0 2 2880 2160 2880 1935 2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 2 1 2.00 60.00 120.00 2880 3240 2880 4185 2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 2 1 2.00 60.00 120.00 3960 2700 5040 2700 2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 2 1 2.00 60.00 120.00 2880 4590 2880 5175 2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 0 0 2 7605 4095 7605 4320 2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 0 1 3 2 1 2.00 60.00 120.00 3780 5670 7650 5670 7650 5310 2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 3 2 1 2.00 60.00 120.00 6480 2700 7605 2700 7605 3690 2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 2 1 2.00 60.00 120.00 8550 4815 9270 4815 2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 3 2 1 2.00 60.00 120.00 10440 4275 10440 3915 9000 3915 2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 2 1 2.00 60.00 120.00 10440 5355 10440 5985 2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 0 0 2 10395 7920 10395 7470 2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 0 1 5 2 1 2.00 60.00 120.00 11520 1980 12780 1980 12780 9225 10395 9225 10395 8685 2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 0 0 5 7605 4320 6705 4815 7650 5310 8550 4815 7605 4320 2 4 0 2 0 7 50 -1 -1 0.000 0 0 7 0 0 5 9000 4095 9000 3690 6210 3690 6210 4095 9000 4095 2 4 0 2 0 7 50 -1 -1 0.000 0 0 7 0 0 5 6480 2880 6480 2520 5040 2520 5040 2880 6480 2880 2 4 0 2 0 7 50 -1 -1 0.000 0 0 7 0 0 5 4545 4590 4545 4185 1305 4185 1305 4590 4545 4590 2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 0 0 5 2880 2160 1800 2700 2880 3240 3960 2700 2880 2160 2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 2 1 2.00 60.00 120.00 9450 8325 8415 8325 2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 3 2 1 2.00 60.00 120.00 9270 1980 5760 1980 5760 2520 2 4 0 2 4 7 50 -1 -1 0.000 0 0 7 0 0 5 8415 8505 7245 8505 7245 8145 8415 8145 8415 8505 2 4 0 2 13 7 50 -1 -1 0.000 0 0 7 0 0 5 3780 6210 1980 6210 1980 5175 3780 5175 3780 6210 4 0 0 50 -1 0 12 0.0000 0 135 270 2520 3690 yes\001 4 0 0 50 -1 0 12 0.0000 0 90 210 4455 2880 no\001 4 0 0 50 -1 0 12 0.0000 0 90 210 9900 3825 no\001 4 1 0 50 -1 0 12 0.0000 0 135 1035 7605 4770 convergence\001 4 1 0 50 -1 0 12 0.0000 0 135 765 7605 4995 reached ?\001 4 1 0 50 -1 0 12 0.0000 0 180 2505 7605 3960 solve network equation system\001 4 1 0 50 -1 0 12 0.0000 0 180 1215 5760 2745 apply nodesets\001 4 1 0 50 -1 0 12 0.0000 0 135 1485 2880 2745 is network linear ?\001 4 1 0 50 -1 0 12 0.0000 0 180 2940 2880 4455 solve network equation system once\001 4 0 0 50 -1 0 12 0.0000 0 135 270 10485 9000 yes\001 4 0 0 50 -1 0 12 0.0000 0 90 210 8865 8235 no\001 4 0 0 50 -1 0 12 0.0000 0 135 270 6705 5580 yes\001 4 0 0 50 -1 0 12 0.0000 0 135 270 10530 5625 yes\001 4 0 0 50 -1 0 12 0.0000 0 90 210 8685 4725 no\001 4 1 0 50 -1 0 12 0.0000 0 135 930 7830 8370 no solution\001 4 0 0 50 -1 0 12 0.0000 0 180 1230 2070 5625 node voltages\001 4 0 0 50 -1 0 12 0.0000 0 135 1335 2070 5850 branch currents\001 4 0 0 50 -1 0 12 0.0000 0 180 1500 2070 6075 (operating point)\001 4 0 0 50 -1 0 12 0.0000 0 135 990 2070 5400 save results:\001