/****************************************************************************** * * Copyright(c) 2007 - 2017 Realtek Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * *****************************************************************************/ #define _RTW_SECURITY_C_ #include #include static const char *_security_type_str[] = { "N/A", "WEP40", "TKIP", "TKIP_WM", "AES", "WEP104", "SMS4", "GCMP", }; static const char *_security_type_bip_str[] = { "BIP_CMAC_128", "BIP_GMAC_128", "BIP_GMAC_256", "BIP_CMAC_256", }; const char *security_type_str(u8 value) { #ifdef CONFIG_IEEE80211W if ((_BIP_MAX_ > value) && (value >= _BIP_CMAC_128_)) return _security_type_bip_str[value & ~_SEC_TYPE_BIT_]; #endif if (_CCMP_256_ == value) return "CCMP_256"; if (_GCMP_256_ == value) return "GCMP_256"; if (_SEC_TYPE_MAX_ > value) return _security_type_str[value]; return NULL; } #ifdef CONFIG_IEEE80211W u32 security_type_bip_to_gmcs(enum security_type type) { switch (type) { case _BIP_CMAC_128_: return WPA_CIPHER_BIP_CMAC_128; case _BIP_GMAC_128_: return WPA_CIPHER_BIP_GMAC_128; case _BIP_GMAC_256_: return WPA_CIPHER_BIP_GMAC_256; case _BIP_CMAC_256_: return WPA_CIPHER_BIP_CMAC_256; default: return 0; } } #endif #ifdef DBG_SW_SEC_CNT #define WEP_SW_ENC_CNT_INC(sec, ra) do {\ if (is_broadcast_mac_addr(ra)) \ sec->wep_sw_enc_cnt_bc++; \ else if (is_multicast_mac_addr(ra)) \ sec->wep_sw_enc_cnt_mc++; \ else \ sec->wep_sw_enc_cnt_uc++; \ } while (0) #define WEP_SW_DEC_CNT_INC(sec, ra) do {\ if (is_broadcast_mac_addr(ra)) \ sec->wep_sw_dec_cnt_bc++; \ else if (is_multicast_mac_addr(ra)) \ sec->wep_sw_dec_cnt_mc++; \ else \ sec->wep_sw_dec_cnt_uc++; \ } while (0) #define TKIP_SW_ENC_CNT_INC(sec, ra) do {\ if (is_broadcast_mac_addr(ra)) \ sec->tkip_sw_enc_cnt_bc++; \ else if (is_multicast_mac_addr(ra)) \ sec->tkip_sw_enc_cnt_mc++; \ else \ sec->tkip_sw_enc_cnt_uc++; \ } while (0) #define TKIP_SW_DEC_CNT_INC(sec, ra) do {\ if (is_broadcast_mac_addr(ra)) \ sec->tkip_sw_dec_cnt_bc++; \ else if (is_multicast_mac_addr(ra)) \ sec->tkip_sw_dec_cnt_mc++; \ else \ sec->tkip_sw_dec_cnt_uc++; \ } while (0) #define AES_SW_ENC_CNT_INC(sec, ra) do {\ if (is_broadcast_mac_addr(ra)) \ sec->aes_sw_enc_cnt_bc++; \ else if (is_multicast_mac_addr(ra)) \ sec->aes_sw_enc_cnt_mc++; \ else \ sec->aes_sw_enc_cnt_uc++; \ } while (0) #define AES_SW_DEC_CNT_INC(sec, ra) do {\ if (is_broadcast_mac_addr(ra)) \ sec->aes_sw_dec_cnt_bc++; \ else if (is_multicast_mac_addr(ra)) \ sec->aes_sw_dec_cnt_mc++; \ else \ sec->aes_sw_dec_cnt_uc++; \ } while (0) #define GCMP_SW_ENC_CNT_INC(sec, ra) do {\ if (is_broadcast_mac_addr(ra)) \ sec->gcmp_sw_enc_cnt_bc++; \ else if (is_multicast_mac_addr(ra)) \ sec->gcmp_sw_enc_cnt_mc++; \ else \ sec->gcmp_sw_enc_cnt_uc++; \ } while (0) #define GCMP_SW_DEC_CNT_INC(sec, ra) do {\ if (is_broadcast_mac_addr(ra)) \ sec->gcmp_sw_dec_cnt_bc++; \ else if (is_multicast_mac_addr(ra)) \ sec->gcmp_sw_dec_cnt_mc++; \ else \ sec->gcmp_sw_dec_cnt_uc++; \ } while (0) #else #define WEP_SW_ENC_CNT_INC(sec, ra) #define WEP_SW_DEC_CNT_INC(sec, ra) #define TKIP_SW_ENC_CNT_INC(sec, ra) #define TKIP_SW_DEC_CNT_INC(sec, ra) #define AES_SW_ENC_CNT_INC(sec, ra) #define AES_SW_DEC_CNT_INC(sec, ra) #define GCMP_SW_ENC_CNT_INC(sec, ra) #define GCMP_SW_DEC_CNT_INC(sec, ra) #endif /* DBG_SW_SEC_CNT */ /* *****WEP related***** */ #define CRC32_POLY 0x04c11db7 struct arc4context { u32 x; u32 y; u8 state[256]; }; static void arcfour_init(struct arc4context *parc4ctx, u8 *key, u32 key_len) { u32 t, u; u32 keyindex; u32 stateindex; u8 *state; u32 counter; state = parc4ctx->state; parc4ctx->x = 0; parc4ctx->y = 0; for (counter = 0; counter < 256; counter++) state[counter] = (u8)counter; keyindex = 0; stateindex = 0; for (counter = 0; counter < 256; counter++) { t = state[counter]; stateindex = (stateindex + key[keyindex] + t) & 0xff; u = state[stateindex]; state[stateindex] = (u8)t; state[counter] = (u8)u; if (++keyindex >= key_len) keyindex = 0; } } static u32 arcfour_byte(struct arc4context *parc4ctx) { u32 x; u32 y; u32 sx, sy; u8 *state; state = parc4ctx->state; x = (parc4ctx->x + 1) & 0xff; sx = state[x]; y = (sx + parc4ctx->y) & 0xff; sy = state[y]; parc4ctx->x = x; parc4ctx->y = y; state[y] = (u8)sx; state[x] = (u8)sy; return state[(sx + sy) & 0xff]; } static void arcfour_encrypt(struct arc4context *parc4ctx, u8 *dest, u8 *src, u32 len) { u32 i; for (i = 0; i < len; i++) dest[i] = src[i] ^ (unsigned char)arcfour_byte(parc4ctx); } static sint bcrc32initialized = 0; static u32 crc32_table[256]; static u8 crc32_reverseBit(u8 data) { return (u8)((data << 7) & 0x80) | ((data << 5) & 0x40) | ((data << 3) & 0x20) | ((data << 1) & 0x10) | ((data >> 1) & 0x08) | ((data >> 3) & 0x04) | ((data >> 5) & 0x02) | (( data >> 7) & 0x01) ; } static void crc32_init(void) { if (bcrc32initialized == 1) goto exit; else { sint i, j; u32 c; u8 *p = (u8 *)&c, *p1; u8 k; c = 0x12340000; for (i = 0; i < 256; ++i) { k = crc32_reverseBit((u8)i); for (c = ((u32)k) << 24, j = 8; j > 0; --j) c = c & 0x80000000 ? (c << 1) ^ CRC32_POLY : (c << 1); p1 = (u8 *)&crc32_table[i]; p1[0] = crc32_reverseBit(p[3]); p1[1] = crc32_reverseBit(p[2]); p1[2] = crc32_reverseBit(p[1]); p1[3] = crc32_reverseBit(p[0]); } bcrc32initialized = 1; } exit: return; } static u32 getcrc32(u8 *buf, sint len) { u8 *p; u32 crc; if (bcrc32initialized == 0) crc32_init(); crc = 0xffffffff; /* preload shift register, per CRC-32 spec */ for (p = buf; len > 0; ++p, --len) crc = crc32_table[(crc ^ *p) & 0xff] ^ (crc >> 8); return ~crc; /* transmit complement, per CRC-32 spec */ } /* Need to consider the fragment situation */ void rtw_wep_encrypt(_adapter *padapter, u8 *pxmitframe) { /* exclude ICV */ unsigned char crc[4]; struct arc4context mycontext; sint curfragnum, length; u32 keylength; u8 *pframe, *payload, *iv; /* ,*wepkey */ u8 wepkey[16]; u8 hw_hdr_offset = 0; struct pkt_attrib *pattrib = &((struct xmit_frame *)pxmitframe)->attrib; struct security_priv *psecuritypriv = &padapter->securitypriv; struct xmit_priv *pxmitpriv = &padapter->xmitpriv; if (((struct xmit_frame *)pxmitframe)->buf_addr == NULL) return; #ifdef CONFIG_USB_TX_AGGREGATION hw_hdr_offset = TXDESC_SIZE + (((struct xmit_frame *)pxmitframe)->pkt_offset * PACKET_OFFSET_SZ); #else #ifdef CONFIG_TX_EARLY_MODE hw_hdr_offset = TXDESC_OFFSET + EARLY_MODE_INFO_SIZE; #else hw_hdr_offset = TXDESC_OFFSET; #endif #endif pframe = ((struct xmit_frame *)pxmitframe)->buf_addr + hw_hdr_offset; /* start to encrypt each fragment */ if ((pattrib->encrypt == _WEP40_) || (pattrib->encrypt == _WEP104_)) { keylength = psecuritypriv->dot11DefKeylen[psecuritypriv->dot11PrivacyKeyIndex]; for (curfragnum = 0; curfragnum < pattrib->nr_frags; curfragnum++) { iv = pframe + pattrib->hdrlen; _rtw_memcpy(&wepkey[0], iv, 3); _rtw_memcpy(&wepkey[3], &psecuritypriv->dot11DefKey[psecuritypriv->dot11PrivacyKeyIndex].skey[0], keylength); payload = pframe + pattrib->iv_len + pattrib->hdrlen; if ((curfragnum + 1) == pattrib->nr_frags) { /* the last fragment */ length = pattrib->last_txcmdsz - pattrib->hdrlen - pattrib->iv_len - pattrib->icv_len; *((u32 *)crc) = cpu_to_le32(getcrc32(payload, length)); arcfour_init(&mycontext, wepkey, 3 + keylength); arcfour_encrypt(&mycontext, payload, payload, length); arcfour_encrypt(&mycontext, payload + length, crc, 4); } else { length = pxmitpriv->frag_len - pattrib->hdrlen - pattrib->iv_len - pattrib->icv_len ; *((u32 *)crc) = cpu_to_le32(getcrc32(payload, length)); arcfour_init(&mycontext, wepkey, 3 + keylength); arcfour_encrypt(&mycontext, payload, payload, length); arcfour_encrypt(&mycontext, payload + length, crc, 4); pframe += pxmitpriv->frag_len; pframe = (u8 *)RND4((SIZE_PTR)(pframe)); } } WEP_SW_ENC_CNT_INC(psecuritypriv, pattrib->ra); } } void rtw_wep_decrypt(_adapter *padapter, u8 *precvframe) { /* exclude ICV */ u8 crc[4]; struct arc4context mycontext; sint length; u32 keylength; u8 *pframe, *payload, *iv, wepkey[16]; u8 keyindex; struct rx_pkt_attrib *prxattrib = &(((union recv_frame *)precvframe)->u.hdr.attrib); struct security_priv *psecuritypriv = &padapter->securitypriv; pframe = (unsigned char *)((union recv_frame *)precvframe)->u.hdr.rx_data; /* start to decrypt recvframe */ if ((prxattrib->encrypt == _WEP40_) || (prxattrib->encrypt == _WEP104_)) { iv = pframe + prxattrib->hdrlen; /* keyindex=(iv[3]&0x3); */ keyindex = prxattrib->key_index; keylength = psecuritypriv->dot11DefKeylen[keyindex]; _rtw_memcpy(&wepkey[0], iv, 3); /* _rtw_memcpy(&wepkey[3], &psecuritypriv->dot11DefKey[psecuritypriv->dot11PrivacyKeyIndex].skey[0],keylength); */ _rtw_memcpy(&wepkey[3], &psecuritypriv->dot11DefKey[keyindex].skey[0], keylength); length = ((union recv_frame *)precvframe)->u.hdr.len - prxattrib->hdrlen - prxattrib->iv_len; payload = pframe + prxattrib->iv_len + prxattrib->hdrlen; /* decrypt payload include icv */ arcfour_init(&mycontext, wepkey, 3 + keylength); arcfour_encrypt(&mycontext, payload, payload, length); /* calculate icv and compare the icv */ *((u32 *)crc) = le32_to_cpu(getcrc32(payload, length - 4)); WEP_SW_DEC_CNT_INC(psecuritypriv, prxattrib->ra); } return; } /* 3 =====TKIP related===== */ static u32 secmicgetuint32(u8 *p) /* Convert from Byte[] to Us4Byte32 in a portable way */ { s32 i; u32 res = 0; for (i = 0; i < 4; i++) res |= ((u32)(*p++)) << (8 * i); return res; } static void secmicputuint32(u8 *p, u32 val) /* Convert from Us4Byte32 to Byte[] in a portable way */ { long i; for (i = 0; i < 4; i++) { *p++ = (u8)(val & 0xff); val >>= 8; } } static void secmicclear(struct mic_data *pmicdata) { /* Reset the state to the empty message. */ pmicdata->L = pmicdata->K0; pmicdata->R = pmicdata->K1; pmicdata->nBytesInM = 0; pmicdata->M = 0; } void rtw_secmicsetkey(struct mic_data *pmicdata, u8 *key) { /* Set the key */ pmicdata->K0 = secmicgetuint32(key); pmicdata->K1 = secmicgetuint32(key + 4); /* and reset the message */ secmicclear(pmicdata); } void rtw_secmicappendbyte(struct mic_data *pmicdata, u8 b) { /* Append the byte to our word-sized buffer */ pmicdata->M |= ((unsigned long)b) << (8 * pmicdata->nBytesInM); pmicdata->nBytesInM++; /* Process the word if it is full. */ if (pmicdata->nBytesInM >= 4) { pmicdata->L ^= pmicdata->M; pmicdata->R ^= ROL32(pmicdata->L, 17); pmicdata->L += pmicdata->R; pmicdata->R ^= ((pmicdata->L & 0xff00ff00) >> 8) | ((pmicdata->L & 0x00ff00ff) << 8); pmicdata->L += pmicdata->R; pmicdata->R ^= ROL32(pmicdata->L, 3); pmicdata->L += pmicdata->R; pmicdata->R ^= ROR32(pmicdata->L, 2); pmicdata->L += pmicdata->R; /* Clear the buffer */ pmicdata->M = 0; pmicdata->nBytesInM = 0; } } void rtw_secmicappend(struct mic_data *pmicdata, u8 *src, u32 nbytes) { /* This is simple */ while (nbytes > 0) { rtw_secmicappendbyte(pmicdata, *src++); nbytes--; } } void rtw_secgetmic(struct mic_data *pmicdata, u8 *dst) { /* Append the minimum padding */ rtw_secmicappendbyte(pmicdata, 0x5a); rtw_secmicappendbyte(pmicdata, 0); rtw_secmicappendbyte(pmicdata, 0); rtw_secmicappendbyte(pmicdata, 0); rtw_secmicappendbyte(pmicdata, 0); /* and then zeroes until the length is a multiple of 4 */ while (pmicdata->nBytesInM != 0) rtw_secmicappendbyte(pmicdata, 0); /* The appendByte function has already computed the result. */ secmicputuint32(dst, pmicdata->L); secmicputuint32(dst + 4, pmicdata->R); /* Reset to the empty message. */ secmicclear(pmicdata); } void rtw_seccalctkipmic(u8 *key, u8 *header, u8 *data, u32 data_len, u8 *mic_code, u8 pri) { struct mic_data micdata; u8 priority[4] = {0x0, 0x0, 0x0, 0x0}; rtw_secmicsetkey(&micdata, key); priority[0] = pri; /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */ if (header[1] & 1) { /* ToDS==1 */ rtw_secmicappend(&micdata, &header[16], 6); /* DA */ if (header[1] & 2) /* From Ds==1 */ rtw_secmicappend(&micdata, &header[24], 6); else rtw_secmicappend(&micdata, &header[10], 6); } else { /* ToDS==0 */ rtw_secmicappend(&micdata, &header[4], 6); /* DA */ if (header[1] & 2) /* From Ds==1 */ rtw_secmicappend(&micdata, &header[16], 6); else rtw_secmicappend(&micdata, &header[10], 6); } rtw_secmicappend(&micdata, &priority[0], 4); rtw_secmicappend(&micdata, data, data_len); rtw_secgetmic(&micdata, mic_code); } /* macros for extraction/creation of unsigned char/unsigned short values */ #define RotR1(v16) ((((v16) >> 1) & 0x7FFF) ^ (((v16) & 1) << 15)) #define Lo8(v16) ((u8)((v16) & 0x00FF)) #define Hi8(v16) ((u8)(((v16) >> 8) & 0x00FF)) #define Lo16(v32) ((u16)((v32) & 0xFFFF)) #define Hi16(v32) ((u16)(((v32) >> 16) & 0xFFFF)) #define Mk16(hi, lo) ((lo) ^ (((u16)(hi)) << 8)) /* select the Nth 16-bit word of the temporal key unsigned char array TK[] */ #define TK16(N) Mk16(tk[2*(N)+1], tk[2*(N)]) /* S-box lookup: 16 bits --> 16 bits */ #define _S_(v16) (Sbox1[0][Lo8(v16)] ^ Sbox1[1][Hi8(v16)]) /* fixed algorithm "parameters" */ #define PHASE1_LOOP_CNT 8 /* this needs to be "big enough" */ #define TA_SIZE 6 /* 48-bit transmitter address */ #define TK_SIZE 16 /* 128-bit temporal key */ #define P1K_SIZE 10 /* 80-bit Phase1 key */ #define RC4_KEY_SIZE 16 /* 128-bit RC4KEY (104 bits unknown) */ /* 2-unsigned char by 2-unsigned char subset of the full AES S-box table */ static const unsigned short Sbox1[2][256] = /* Sbox for hash (can be in ROM) */ { { 0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154, 0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A, 0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B, 0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B, 0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F, 0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F, 0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5, 0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F, 0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB, 0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397, 0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED, 0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A, 0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194, 0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3, 0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104, 0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D, 0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39, 0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695, 0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83, 0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76, 0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4, 0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B, 0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0, 0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018, 0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751, 0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85, 0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12, 0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9, 0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7, 0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A, 0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8, 0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A, }, { /* second half of table is unsigned char-reversed version of first! */ 0xA5C6, 0x84F8, 0x99EE, 0x8DF6, 0x0DFF, 0xBDD6, 0xB1DE, 0x5491, 0x5060, 0x0302, 0xA9CE, 0x7D56, 0x19E7, 0x62B5, 0xE64D, 0x9AEC, 0x458F, 0x9D1F, 0x4089, 0x87FA, 0x15EF, 0xEBB2, 0xC98E, 0x0BFB, 0xEC41, 0x67B3, 0xFD5F, 0xEA45, 0xBF23, 0xF753, 0x96E4, 0x5B9B, 0xC275, 0x1CE1, 0xAE3D, 0x6A4C, 0x5A6C, 0x417E, 0x02F5, 0x4F83, 0x5C68, 0xF451, 0x34D1, 0x08F9, 0x93E2, 0x73AB, 0x5362, 0x3F2A, 0x0C08, 0x5295, 0x6546, 0x5E9D, 0x2830, 0xA137, 0x0F0A, 0xB52F, 0x090E, 0x3624, 0x9B1B, 0x3DDF, 0x26CD, 0x694E, 0xCD7F, 0x9FEA, 0x1B12, 0x9E1D, 0x7458, 0x2E34, 0x2D36, 0xB2DC, 0xEEB4, 0xFB5B, 0xF6A4, 0x4D76, 0x61B7, 0xCE7D, 0x7B52, 0x3EDD, 0x715E, 0x9713, 0xF5A6, 0x68B9, 0x0000, 0x2CC1, 0x6040, 0x1FE3, 0xC879, 0xEDB6, 0xBED4, 0x468D, 0xD967, 0x4B72, 0xDE94, 0xD498, 0xE8B0, 0x4A85, 0x6BBB, 0x2AC5, 0xE54F, 0x16ED, 0xC586, 0xD79A, 0x5566, 0x9411, 0xCF8A, 0x10E9, 0x0604, 0x81FE, 0xF0A0, 0x4478, 0xBA25, 0xE34B, 0xF3A2, 0xFE5D, 0xC080, 0x8A05, 0xAD3F, 0xBC21, 0x4870, 0x04F1, 0xDF63, 0xC177, 0x75AF, 0x6342, 0x3020, 0x1AE5, 0x0EFD, 0x6DBF, 0x4C81, 0x1418, 0x3526, 0x2FC3, 0xE1BE, 0xA235, 0xCC88, 0x392E, 0x5793, 0xF255, 0x82FC, 0x477A, 0xACC8, 0xE7BA, 0x2B32, 0x95E6, 0xA0C0, 0x9819, 0xD19E, 0x7FA3, 0x6644, 0x7E54, 0xAB3B, 0x830B, 0xCA8C, 0x29C7, 0xD36B, 0x3C28, 0x79A7, 0xE2BC, 0x1D16, 0x76AD, 0x3BDB, 0x5664, 0x4E74, 0x1E14, 0xDB92, 0x0A0C, 0x6C48, 0xE4B8, 0x5D9F, 0x6EBD, 0xEF43, 0xA6C4, 0xA839, 0xA431, 0x37D3, 0x8BF2, 0x32D5, 0x438B, 0x596E, 0xB7DA, 0x8C01, 0x64B1, 0xD29C, 0xE049, 0xB4D8, 0xFAAC, 0x07F3, 0x25CF, 0xAFCA, 0x8EF4, 0xE947, 0x1810, 0xD56F, 0x88F0, 0x6F4A, 0x725C, 0x2438, 0xF157, 0xC773, 0x5197, 0x23CB, 0x7CA1, 0x9CE8, 0x213E, 0xDD96, 0xDC61, 0x860D, 0x850F, 0x90E0, 0x427C, 0xC471, 0xAACC, 0xD890, 0x0506, 0x01F7, 0x121C, 0xA3C2, 0x5F6A, 0xF9AE, 0xD069, 0x9117, 0x5899, 0x273A, 0xB927, 0x38D9, 0x13EB, 0xB32B, 0x3322, 0xBBD2, 0x70A9, 0x8907, 0xA733, 0xB62D, 0x223C, 0x9215, 0x20C9, 0x4987, 0xFFAA, 0x7850, 0x7AA5, 0x8F03, 0xF859, 0x8009, 0x171A, 0xDA65, 0x31D7, 0xC684, 0xB8D0, 0xC382, 0xB029, 0x775A, 0x111E, 0xCB7B, 0xFCA8, 0xD66D, 0x3A2C, } }; /* ********************************************************************** * Routine: Phase 1 -- generate P1K, given TA, TK, IV32 * * Inputs: * tk[] = temporal key [128 bits] * ta[] = transmitter's MAC address [ 48 bits] * iv32 = upper 32 bits of IV [ 32 bits] * Output: * p1k[] = Phase 1 key [ 80 bits] * * Note: * This function only needs to be called every 2**16 packets, * although in theory it could be called every packet. * ********************************************************************** */ static void phase1(u16 *p1k, const u8 *tk, const u8 *ta, u32 iv32) { sint i; /* Initialize the 80 bits of P1K[] from IV32 and TA[0..5] */ p1k[0] = Lo16(iv32); p1k[1] = Hi16(iv32); p1k[2] = Mk16(ta[1], ta[0]); /* use TA[] as little-endian */ p1k[3] = Mk16(ta[3], ta[2]); p1k[4] = Mk16(ta[5], ta[4]); /* Now compute an unbalanced Feistel cipher with 80-bit block */ /* size on the 80-bit block P1K[], using the 128-bit key TK[] */ for (i = 0; i < PHASE1_LOOP_CNT ; i++) { /* Each add operation here is mod 2**16 */ p1k[0] += _S_(p1k[4] ^ TK16((i & 1) + 0)); p1k[1] += _S_(p1k[0] ^ TK16((i & 1) + 2)); p1k[2] += _S_(p1k[1] ^ TK16((i & 1) + 4)); p1k[3] += _S_(p1k[2] ^ TK16((i & 1) + 6)); p1k[4] += _S_(p1k[3] ^ TK16((i & 1) + 0)); p1k[4] += (unsigned short)i; /* avoid "slide attacks" */ } } /* ********************************************************************** * Routine: Phase 2 -- generate RC4KEY, given TK, P1K, IV16 * * Inputs: * tk[] = Temporal key [128 bits] * p1k[] = Phase 1 output key [ 80 bits] * iv16 = low 16 bits of IV counter [ 16 bits] * Output: * rc4key[] = the key used to encrypt the packet [128 bits] * * Note: * The value {TA,IV32,IV16} for Phase1/Phase2 must be unique * across all packets using the same key TK value. Then, for a * given value of TK[], this TKIP48 construction guarantees that * the final RC4KEY value is unique across all packets. * * Suggested implementation optimization: if PPK[] is "overlaid" * appropriately on RC4KEY[], there is no need for the final * for loop below that copies the PPK[] result into RC4KEY[]. * ********************************************************************** */ static void phase2(u8 *rc4key, const u8 *tk, const u16 *p1k, u16 iv16) { sint i; u16 PPK[6]; /* temporary key for mixing */ /* Note: all adds in the PPK[] equations below are mod 2**16 */ for (i = 0; i < 5; i++) PPK[i] = p1k[i]; /* first, copy P1K to PPK */ PPK[5] = p1k[4] + iv16; /* next, add in IV16 */ /* Bijective non-linear mixing of the 96 bits of PPK[0..5] */ PPK[0] += _S_(PPK[5] ^ TK16(0)); /* Mix key in each "round" */ PPK[1] += _S_(PPK[0] ^ TK16(1)); PPK[2] += _S_(PPK[1] ^ TK16(2)); PPK[3] += _S_(PPK[2] ^ TK16(3)); PPK[4] += _S_(PPK[3] ^ TK16(4)); PPK[5] += _S_(PPK[4] ^ TK16(5)); /* Total # S-box lookups == 6 */ /* Final sweep: bijective, "linear". Rotates kill LSB correlations */ PPK[0] += RotR1(PPK[5] ^ TK16(6)); PPK[1] += RotR1(PPK[0] ^ TK16(7)); /* Use all of TK[] in Phase2 */ PPK[2] += RotR1(PPK[1]); PPK[3] += RotR1(PPK[2]); PPK[4] += RotR1(PPK[3]); PPK[5] += RotR1(PPK[4]); /* Note: At this point, for a given key TK[0..15], the 96-bit output */ /* value PPK[0..5] is guaranteed to be unique, as a function */ /* of the 96-bit "input" value {TA,IV32,IV16}. That is, P1K */ /* is now a keyed permutation of {TA,IV32,IV16}. */ /* Set RC4KEY[0..3], which includes "cleartext" portion of RC4 key */ rc4key[0] = Hi8(iv16); /* RC4KEY[0..2] is the WEP IV */ rc4key[1] = (Hi8(iv16) | 0x20) & 0x7F; /* Help avoid weak (FMS) keys */ rc4key[2] = Lo8(iv16); rc4key[3] = Lo8((PPK[5] ^ TK16(0)) >> 1); /* Copy 96 bits of PPK[0..5] to RC4KEY[4..15] (little-endian) */ for (i = 0; i < 6; i++) { rc4key[4 + 2 * i] = Lo8(PPK[i]); rc4key[5 + 2 * i] = Hi8(PPK[i]); } } /* The hlen isn't include the IV */ u32 rtw_tkip_encrypt(_adapter *padapter, u8 *pxmitframe) { /* exclude ICV */ u16 pnl; u32 pnh; u8 rc4key[16]; u8 ttkey[16]; u8 crc[4]; u8 hw_hdr_offset = 0; struct arc4context mycontext; sint curfragnum, length; u32 prwskeylen; u8 *pframe, *payload, *iv, *prwskey; union pn48 dot11txpn; /* struct sta_info *stainfo; */ struct pkt_attrib *pattrib = &((struct xmit_frame *)pxmitframe)->attrib; struct security_priv *psecuritypriv = &padapter->securitypriv; struct xmit_priv *pxmitpriv = &padapter->xmitpriv; u32 res = _SUCCESS; if (((struct xmit_frame *)pxmitframe)->buf_addr == NULL) return _FAIL; #ifdef CONFIG_USB_TX_AGGREGATION hw_hdr_offset = TXDESC_SIZE + (((struct xmit_frame *)pxmitframe)->pkt_offset * PACKET_OFFSET_SZ); #else #ifdef CONFIG_TX_EARLY_MODE hw_hdr_offset = TXDESC_OFFSET + EARLY_MODE_INFO_SIZE; #else hw_hdr_offset = TXDESC_OFFSET; #endif #endif pframe = ((struct xmit_frame *)pxmitframe)->buf_addr + hw_hdr_offset; /* 4 start to encrypt each fragment */ if (pattrib->encrypt == _TKIP_) { /* if(pattrib->psta) { stainfo = pattrib->psta; } else { RTW_INFO("%s, call rtw_get_stainfo()\n", __func__); stainfo=rtw_get_stainfo(&padapter->stapriv ,&pattrib->ra[0] ); } */ /* if (stainfo!=NULL) */ { /* if(!(stainfo->state &WIFI_ASOC_STATE)) { RTW_INFO("%s, psta->state(0x%x) != WIFI_ASOC_STATE\n", __func__, stainfo->state); return _FAIL; } */ if (IS_MCAST(pattrib->ra)) prwskey = psecuritypriv->dot118021XGrpKey[psecuritypriv->dot118021XGrpKeyid].skey; else { /* prwskey=&stainfo->dot118021x_UncstKey.skey[0]; */ prwskey = pattrib->dot118021x_UncstKey.skey; } prwskeylen = 16; for (curfragnum = 0; curfragnum < pattrib->nr_frags; curfragnum++) { iv = pframe + pattrib->hdrlen; payload = pframe + pattrib->iv_len + pattrib->hdrlen; GET_TKIP_PN(iv, dot11txpn); pnl = (u16)(dot11txpn.val); pnh = (u32)(dot11txpn.val >> 16); phase1((u16 *)&ttkey[0], prwskey, &pattrib->ta[0], pnh); phase2(&rc4key[0], prwskey, (u16 *)&ttkey[0], pnl); if ((curfragnum + 1) == pattrib->nr_frags) { /* 4 the last fragment */ length = pattrib->last_txcmdsz - pattrib->hdrlen - pattrib->iv_len - pattrib->icv_len; *((u32 *)crc) = cpu_to_le32(getcrc32(payload, length)); /* modified by Amy*/ arcfour_init(&mycontext, rc4key, 16); arcfour_encrypt(&mycontext, payload, payload, length); arcfour_encrypt(&mycontext, payload + length, crc, 4); } else { length = pxmitpriv->frag_len - pattrib->hdrlen - pattrib->iv_len - pattrib->icv_len ; *((u32 *)crc) = cpu_to_le32(getcrc32(payload, length)); /* modified by Amy*/ arcfour_init(&mycontext, rc4key, 16); arcfour_encrypt(&mycontext, payload, payload, length); arcfour_encrypt(&mycontext, payload + length, crc, 4); pframe += pxmitpriv->frag_len; pframe = (u8 *)RND4((SIZE_PTR)(pframe)); } } TKIP_SW_ENC_CNT_INC(psecuritypriv, pattrib->ra); } /* else{ RTW_INFO("%s, psta==NUL\n", __func__); res=_FAIL; } */ } return res; } /* The hlen isn't include the IV */ u32 rtw_tkip_decrypt(_adapter *padapter, u8 *precvframe) { /* exclude ICV */ u16 pnl; u32 pnh; u8 rc4key[16]; u8 ttkey[16]; u8 crc[4]; struct arc4context mycontext; sint length; u32 prwskeylen; u8 *pframe, *payload, *iv, *prwskey; union pn48 dot11txpn; struct sta_info *stainfo; struct rx_pkt_attrib *prxattrib = &((union recv_frame *)precvframe)->u.hdr.attrib; struct security_priv *psecuritypriv = &padapter->securitypriv; /* struct recv_priv *precvpriv=&padapter->recvpriv; */ u32 res = _SUCCESS; pframe = (unsigned char *)((union recv_frame *)precvframe)->u.hdr.rx_data; /* 4 start to decrypt recvframe */ if (prxattrib->encrypt == _TKIP_) { stainfo = rtw_get_stainfo(&padapter->stapriv , &prxattrib->ta[0]); if (stainfo != NULL) { if (IS_MCAST(prxattrib->ra)) { static systime start = 0; static u32 no_gkey_bc_cnt = 0; static u32 no_gkey_mc_cnt = 0; if (psecuritypriv->binstallGrpkey == _FALSE) { res = _FAIL; if (start == 0) start = rtw_get_current_time(); if (is_broadcast_mac_addr(prxattrib->ra)) no_gkey_bc_cnt++; else no_gkey_mc_cnt++; if (rtw_get_passing_time_ms(start) > 1000) { if (no_gkey_bc_cnt || no_gkey_mc_cnt) { RTW_PRINT(FUNC_ADPT_FMT" no_gkey_bc_cnt:%u, no_gkey_mc_cnt:%u\n", FUNC_ADPT_ARG(padapter), no_gkey_bc_cnt, no_gkey_mc_cnt); } start = rtw_get_current_time(); no_gkey_bc_cnt = 0; no_gkey_mc_cnt = 0; } goto exit; } if (no_gkey_bc_cnt || no_gkey_mc_cnt) { RTW_PRINT(FUNC_ADPT_FMT" gkey installed. no_gkey_bc_cnt:%u, no_gkey_mc_cnt:%u\n", FUNC_ADPT_ARG(padapter), no_gkey_bc_cnt, no_gkey_mc_cnt); } start = 0; no_gkey_bc_cnt = 0; no_gkey_mc_cnt = 0; /* RTW_INFO("rx bc/mc packets, to perform sw rtw_tkip_decrypt\n"); */ /* prwskey = psecuritypriv->dot118021XGrpKey[psecuritypriv->dot118021XGrpKeyid].skey; */ prwskey = psecuritypriv->dot118021XGrpKey[prxattrib->key_index].skey; prwskeylen = 16; } else { prwskey = &stainfo->dot118021x_UncstKey.skey[0]; prwskeylen = 16; } iv = pframe + prxattrib->hdrlen; payload = pframe + prxattrib->iv_len + prxattrib->hdrlen; length = ((union recv_frame *)precvframe)->u.hdr.len - prxattrib->hdrlen - prxattrib->iv_len; GET_TKIP_PN(iv, dot11txpn); pnl = (u16)(dot11txpn.val); pnh = (u32)(dot11txpn.val >> 16); phase1((u16 *)&ttkey[0], prwskey, &prxattrib->ta[0], pnh); phase2(&rc4key[0], prwskey, (unsigned short *)&ttkey[0], pnl); /* 4 decrypt payload include icv */ arcfour_init(&mycontext, rc4key, 16); arcfour_encrypt(&mycontext, payload, payload, length); *((u32 *)crc) = le32_to_cpu(getcrc32(payload, length - 4)); if (crc[3] != payload[length - 1] || crc[2] != payload[length - 2] || crc[1] != payload[length - 3] || crc[0] != payload[length - 4]) { res = _FAIL; } TKIP_SW_DEC_CNT_INC(psecuritypriv, prxattrib->ra); } else { res = _FAIL; } } exit: return res; } /* 3 =====AES related===== */ #if (NEW_CRYPTO == 0) #define MAX_MSG_SIZE 2048 /*****************************/ /******** SBOX Table *********/ /*****************************/ static u8 sbox_table[256] = { 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; /*****************************/ /**** Function Prototypes ****/ /*****************************/ static void bitwise_xor(u8 *ina, u8 *inb, u8 *out); static void construct_mic_iv( u8 *mic_header1, sint qc_exists, sint a4_exists, u8 *mpdu, uint payload_length, u8 *pn_vector, uint frtype);/* add for CONFIG_IEEE80211W, none 11w also can use */ static void construct_mic_header1( u8 *mic_header1, sint header_length, u8 *mpdu, uint frtype);/* add for CONFIG_IEEE80211W, none 11w also can use */ static void construct_mic_header2( u8 *mic_header2, u8 *mpdu, sint a4_exists, sint qc_exists); static void construct_ctr_preload( u8 *ctr_preload, sint a4_exists, sint qc_exists, u8 *mpdu, u8 *pn_vector, sint c, uint frtype);/* add for CONFIG_IEEE80211W, none 11w also can use */ static void xor_128(u8 *a, u8 *b, u8 *out); static void xor_32(u8 *a, u8 *b, u8 *out); static u8 sbox(u8 a); static void next_key(u8 *key, sint round); static void byte_sub(u8 *in, u8 *out); static void shift_row(u8 *in, u8 *out); static void mix_column(u8 *in, u8 *out); static void aes128k128d(u8 *key, u8 *data, u8 *ciphertext); /****************************************/ /* aes128k128d() */ /* Performs a 128 bit AES encrypt with */ /* 128 bit data. */ /****************************************/ static void xor_128(u8 *a, u8 *b, u8 *out) { sint i; for (i = 0; i < 16; i++) out[i] = a[i] ^ b[i]; } static void xor_32(u8 *a, u8 *b, u8 *out) { sint i; for (i = 0; i < 4; i++) out[i] = a[i] ^ b[i]; } static u8 sbox(u8 a) { return sbox_table[(sint)a]; } static void next_key(u8 *key, sint round) { u8 rcon; u8 sbox_key[4]; u8 rcon_table[12] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x36, 0x36 }; sbox_key[0] = sbox(key[13]); sbox_key[1] = sbox(key[14]); sbox_key[2] = sbox(key[15]); sbox_key[3] = sbox(key[12]); rcon = rcon_table[round]; xor_32(&key[0], sbox_key, &key[0]); key[0] = key[0] ^ rcon; xor_32(&key[4], &key[0], &key[4]); xor_32(&key[8], &key[4], &key[8]); xor_32(&key[12], &key[8], &key[12]); } static void byte_sub(u8 *in, u8 *out) { sint i; for (i = 0; i < 16; i++) out[i] = sbox(in[i]); } static void shift_row(u8 *in, u8 *out) { out[0] = in[0]; out[1] = in[5]; out[2] = in[10]; out[3] = in[15]; out[4] = in[4]; out[5] = in[9]; out[6] = in[14]; out[7] = in[3]; out[8] = in[8]; out[9] = in[13]; out[10] = in[2]; out[11] = in[7]; out[12] = in[12]; out[13] = in[1]; out[14] = in[6]; out[15] = in[11]; } static void mix_column(u8 *in, u8 *out) { sint i; u8 add1b[4]; u8 add1bf7[4]; u8 rotl[4]; u8 swap_halfs[4]; u8 andf7[4]; u8 rotr[4]; u8 temp[4]; u8 tempb[4]; for (i = 0 ; i < 4; i++) { if ((in[i] & 0x80) == 0x80) add1b[i] = 0x1b; else add1b[i] = 0x00; } swap_halfs[0] = in[2]; /* Swap halfs */ swap_halfs[1] = in[3]; swap_halfs[2] = in[0]; swap_halfs[3] = in[1]; rotl[0] = in[3]; /* Rotate left 8 bits */ rotl[1] = in[0]; rotl[2] = in[1]; rotl[3] = in[2]; andf7[0] = in[0] & 0x7f; andf7[1] = in[1] & 0x7f; andf7[2] = in[2] & 0x7f; andf7[3] = in[3] & 0x7f; for (i = 3; i > 0; i--) { /* logical shift left 1 bit */ andf7[i] = andf7[i] << 1; if ((andf7[i - 1] & 0x80) == 0x80) andf7[i] = (andf7[i] | 0x01); } andf7[0] = andf7[0] << 1; andf7[0] = andf7[0] & 0xfe; xor_32(add1b, andf7, add1bf7); xor_32(in, add1bf7, rotr); temp[0] = rotr[0]; /* Rotate right 8 bits */ rotr[0] = rotr[1]; rotr[1] = rotr[2]; rotr[2] = rotr[3]; rotr[3] = temp[0]; xor_32(add1bf7, rotr, temp); xor_32(swap_halfs, rotl, tempb); xor_32(temp, tempb, out); } static void aes128k128d(u8 *key, u8 *data, u8 *ciphertext) { sint round; sint i; u8 intermediatea[16]; u8 intermediateb[16]; u8 round_key[16]; for (i = 0; i < 16; i++) round_key[i] = key[i]; for (round = 0; round < 11; round++) { if (round == 0) { xor_128(round_key, data, ciphertext); next_key(round_key, round); } else if (round == 10) { byte_sub(ciphertext, intermediatea); shift_row(intermediatea, intermediateb); xor_128(intermediateb, round_key, ciphertext); } else { /* 1 - 9 */ byte_sub(ciphertext, intermediatea); shift_row(intermediatea, intermediateb); mix_column(&intermediateb[0], &intermediatea[0]); mix_column(&intermediateb[4], &intermediatea[4]); mix_column(&intermediateb[8], &intermediatea[8]); mix_column(&intermediateb[12], &intermediatea[12]); xor_128(intermediatea, round_key, ciphertext); next_key(round_key, round); } } } /************************************************/ /* construct_mic_iv() */ /* Builds the MIC IV from header fields and PN */ /* Baron think the function is construct CCM */ /* nonce */ /************************************************/ static void construct_mic_iv( u8 *mic_iv, sint qc_exists, sint a4_exists, u8 *mpdu, uint payload_length, u8 *pn_vector, uint frtype/* add for CONFIG_IEEE80211W, none 11w also can use */ ) { sint i; mic_iv[0] = 0x59; if (qc_exists && a4_exists) mic_iv[1] = mpdu[30] & 0x0f; /* QoS_TC */ if (qc_exists && !a4_exists) mic_iv[1] = mpdu[24] & 0x0f; /* mute bits 7-4 */ if (!qc_exists) mic_iv[1] = 0x00; #if defined(CONFIG_IEEE80211W) || defined(CONFIG_RTW_MESH) /* 802.11w management frame should set management bit(4) */ if (frtype == WIFI_MGT_TYPE) mic_iv[1] |= BIT(4); #endif for (i = 2; i < 8; i++) mic_iv[i] = mpdu[i + 8]; /* mic_iv[2:7] = A2[0:5] = mpdu[10:15] */ #ifdef CONSISTENT_PN_ORDER for (i = 8; i < 14; i++) mic_iv[i] = pn_vector[i - 8]; /* mic_iv[8:13] = PN[0:5] */ #else for (i = 8; i < 14; i++) mic_iv[i] = pn_vector[13 - i]; /* mic_iv[8:13] = PN[5:0] */ #endif mic_iv[14] = (unsigned char)(payload_length / 256); mic_iv[15] = (unsigned char)(payload_length % 256); } /************************************************/ /* construct_mic_header1() */ /* Builds the first MIC header block from */ /* header fields. */ /* Build AAD SC,A1,A2 */ /************************************************/ static void construct_mic_header1( u8 *mic_header1, sint header_length, u8 *mpdu, uint frtype/* add for CONFIG_IEEE80211W, none 11w also can use */ ) { mic_header1[0] = (u8)((header_length - 2) / 256); mic_header1[1] = (u8)((header_length - 2) % 256); #if defined(CONFIG_IEEE80211W) || defined(CONFIG_RTW_MESH) /* 802.11w management frame don't AND subtype bits 4,5,6 of frame control field */ if (frtype == WIFI_MGT_TYPE) mic_header1[2] = mpdu[0]; else #endif mic_header1[2] = mpdu[0] & 0xcf; /* Mute CF poll & CF ack bits */ mic_header1[3] = mpdu[1] & 0xc7; /* Mute retry, more data and pwr mgt bits */ mic_header1[4] = mpdu[4]; /* A1 */ mic_header1[5] = mpdu[5]; mic_header1[6] = mpdu[6]; mic_header1[7] = mpdu[7]; mic_header1[8] = mpdu[8]; mic_header1[9] = mpdu[9]; mic_header1[10] = mpdu[10]; /* A2 */ mic_header1[11] = mpdu[11]; mic_header1[12] = mpdu[12]; mic_header1[13] = mpdu[13]; mic_header1[14] = mpdu[14]; mic_header1[15] = mpdu[15]; } /************************************************/ /* construct_mic_header2() */ /* Builds the last MIC header block from */ /* header fields. */ /************************************************/ static void construct_mic_header2( u8 *mic_header2, u8 *mpdu, sint a4_exists, sint qc_exists ) { sint i; for (i = 0; i < 16; i++) mic_header2[i] = 0x00; mic_header2[0] = mpdu[16]; /* A3 */ mic_header2[1] = mpdu[17]; mic_header2[2] = mpdu[18]; mic_header2[3] = mpdu[19]; mic_header2[4] = mpdu[20]; mic_header2[5] = mpdu[21]; /* mic_header2[6] = mpdu[22] & 0xf0; SC */ mic_header2[6] = 0x00; mic_header2[7] = 0x00; /* mpdu[23]; */ if (!qc_exists && a4_exists) { for (i = 0; i < 6; i++) mic_header2[8 + i] = mpdu[24 + i]; /* A4 */ } if (qc_exists && !a4_exists) { mic_header2[8] = mpdu[24] & 0x0f; /* mute bits 15 - 4 */ mic_header2[9] = mpdu[25] & 0x00; } if (qc_exists && a4_exists) { for (i = 0; i < 6; i++) mic_header2[8 + i] = mpdu[24 + i]; /* A4 */ mic_header2[14] = mpdu[30] & 0x0f; mic_header2[15] = mpdu[31] & 0x00; } } /************************************************/ /* construct_mic_header2() */ /* Builds the last MIC header block from */ /* header fields. */ /* Baron think the function is construct CCM */ /* nonce */ /************************************************/ static void construct_ctr_preload( u8 *ctr_preload, sint a4_exists, sint qc_exists, u8 *mpdu, u8 *pn_vector, sint c, uint frtype /* add for CONFIG_IEEE80211W, none 11w also can use */ ) { sint i = 0; for (i = 0; i < 16; i++) ctr_preload[i] = 0x00; i = 0; ctr_preload[0] = 0x01; /* flag */ if (qc_exists && a4_exists) ctr_preload[1] = mpdu[30] & 0x0f; /* QoC_Control */ if (qc_exists && !a4_exists) ctr_preload[1] = mpdu[24] & 0x0f; #if defined(CONFIG_IEEE80211W) || defined(CONFIG_RTW_MESH) /* 802.11w management frame should set management bit(4) */ if (frtype == WIFI_MGT_TYPE) ctr_preload[1] |= BIT(4); #endif for (i = 2; i < 8; i++) ctr_preload[i] = mpdu[i + 8]; /* ctr_preload[2:7] = A2[0:5] = mpdu[10:15] */ #ifdef CONSISTENT_PN_ORDER for (i = 8; i < 14; i++) ctr_preload[i] = pn_vector[i - 8]; /* ctr_preload[8:13] = PN[0:5] */ #else for (i = 8; i < 14; i++) ctr_preload[i] = pn_vector[13 - i]; /* ctr_preload[8:13] = PN[5:0] */ #endif ctr_preload[14] = (unsigned char)(c / 256); /* Ctr */ ctr_preload[15] = (unsigned char)(c % 256); } /************************************/ /* bitwise_xor() */ /* A 128 bit, bitwise exclusive or */ /************************************/ static void bitwise_xor(u8 *ina, u8 *inb, u8 *out) { sint i; for (i = 0; i < 16; i++) out[i] = ina[i] ^ inb[i]; } static sint aes_cipher(u8 *key, uint hdrlen, u8 *pframe, uint plen) { /* static unsigned char message[MAX_MSG_SIZE]; */ uint qc_exists, a4_exists, i, j, payload_remainder, num_blocks, payload_index; u8 pn_vector[6]; u8 mic_iv[16]; u8 mic_header1[16]; u8 mic_header2[16]; u8 ctr_preload[16]; /* Intermediate Buffers */ u8 chain_buffer[16]; u8 aes_out[16]; u8 padded_buffer[16]; u8 mic[8]; /* uint offset = 0; */ uint frtype = GetFrameType(pframe); uint frsubtype = get_frame_sub_type(pframe); frsubtype = frsubtype >> 4; _rtw_memset((void *)mic_iv, 0, 16); _rtw_memset((void *)mic_header1, 0, 16); _rtw_memset((void *)mic_header2, 0, 16); _rtw_memset((void *)ctr_preload, 0, 16); _rtw_memset((void *)chain_buffer, 0, 16); _rtw_memset((void *)aes_out, 0, 16); _rtw_memset((void *)padded_buffer, 0, 16); if ((hdrlen == WLAN_HDR_A3_LEN) || (hdrlen == WLAN_HDR_A3_QOS_LEN)) a4_exists = 0; else a4_exists = 1; if ( ((frtype | frsubtype) == WIFI_DATA_CFACK) || ((frtype | frsubtype) == WIFI_DATA_CFPOLL) || ((frtype | frsubtype) == WIFI_DATA_CFACKPOLL)) { qc_exists = 1; if (hdrlen != WLAN_HDR_A3_QOS_LEN && hdrlen != WLAN_HDR_A4_QOS_LEN) hdrlen += 2; } /* add for CONFIG_IEEE80211W, none 11w also can use */ else if ((frtype == WIFI_DATA) && ((frsubtype == 0x08) || (frsubtype == 0x09) || (frsubtype == 0x0a) || (frsubtype == 0x0b))) { if (hdrlen != WLAN_HDR_A3_QOS_LEN && hdrlen != WLAN_HDR_A4_QOS_LEN) hdrlen += 2; qc_exists = 1; } else qc_exists = 0; pn_vector[0] = pframe[hdrlen]; pn_vector[1] = pframe[hdrlen + 1]; pn_vector[2] = pframe[hdrlen + 4]; pn_vector[3] = pframe[hdrlen + 5]; pn_vector[4] = pframe[hdrlen + 6]; pn_vector[5] = pframe[hdrlen + 7]; construct_mic_iv( mic_iv, qc_exists, a4_exists, pframe, /* message, */ plen, pn_vector, frtype /* add for CONFIG_IEEE80211W, none 11w also can use */ ); construct_mic_header1( mic_header1, hdrlen, pframe, /* message */ frtype /* add for CONFIG_IEEE80211W, none 11w also can use */ ); construct_mic_header2( mic_header2, pframe, /* message, */ a4_exists, qc_exists ); payload_remainder = plen % 16; num_blocks = plen / 16; /* Find start of payload */ payload_index = (hdrlen + 8); /* Calculate MIC */ aes128k128d(key, mic_iv, aes_out); bitwise_xor(aes_out, mic_header1, chain_buffer); aes128k128d(key, chain_buffer, aes_out); bitwise_xor(aes_out, mic_header2, chain_buffer); aes128k128d(key, chain_buffer, aes_out); for (i = 0; i < num_blocks; i++) { bitwise_xor(aes_out, &pframe[payload_index], chain_buffer);/* bitwise_xor(aes_out, &message[payload_index], chain_buffer); */ payload_index += 16; aes128k128d(key, chain_buffer, aes_out); } /* Add on the final payload block if it needs padding */ if (payload_remainder > 0) { for (j = 0; j < 16; j++) padded_buffer[j] = 0x00; for (j = 0; j < payload_remainder; j++) { padded_buffer[j] = pframe[payload_index++];/* padded_buffer[j] = message[payload_index++]; */ } bitwise_xor(aes_out, padded_buffer, chain_buffer); aes128k128d(key, chain_buffer, aes_out); } for (j = 0 ; j < 8; j++) mic[j] = aes_out[j]; /* Insert MIC into payload */ for (j = 0; j < 8; j++) pframe[payload_index + j] = mic[j]; /* message[payload_index+j] = mic[j]; */ payload_index = hdrlen + 8; for (i = 0; i < num_blocks; i++) { construct_ctr_preload( ctr_preload, a4_exists, qc_exists, pframe, /* message, */ pn_vector, i + 1, frtype); /* add for CONFIG_IEEE80211W, none 11w also can use */ aes128k128d(key, ctr_preload, aes_out); bitwise_xor(aes_out, &pframe[payload_index], chain_buffer);/* bitwise_xor(aes_out, &message[payload_index], chain_buffer); */ for (j = 0; j < 16; j++) pframe[payload_index++] = chain_buffer[j];/* for (j=0; j<16;j++) message[payload_index++] = chain_buffer[j]; */ } if (payload_remainder > 0) { /* If there is a short final block, then pad it,*/ /* encrypt it and copy the unpadded part back */ construct_ctr_preload( ctr_preload, a4_exists, qc_exists, pframe, /* message, */ pn_vector, num_blocks + 1, frtype); /* add for CONFIG_IEEE80211W, none 11w also can use */ for (j = 0; j < 16; j++) padded_buffer[j] = 0x00; for (j = 0; j < payload_remainder; j++) { padded_buffer[j] = pframe[payload_index + j]; /* padded_buffer[j] = message[payload_index+j]; */ } aes128k128d(key, ctr_preload, aes_out); bitwise_xor(aes_out, padded_buffer, chain_buffer); for (j = 0; j < payload_remainder; j++) pframe[payload_index++] = chain_buffer[j];/* for (j=0; jattrib; struct security_priv *psecuritypriv = &padapter->securitypriv; struct xmit_priv *pxmitpriv = &padapter->xmitpriv; sint curfragnum, plen; u32 prwskeylen; u8 *pframe; u8 *prwskey; u8 hw_hdr_offset = 0; u32 res = _SUCCESS; if (((struct xmit_frame *)pxmitframe)->buf_addr == NULL) return _FAIL; #ifdef CONFIG_USB_TX_AGGREGATION hw_hdr_offset = TXDESC_SIZE + (((struct xmit_frame *)pxmitframe)->pkt_offset * PACKET_OFFSET_SZ); #else #ifdef CONFIG_TX_EARLY_MODE hw_hdr_offset = TXDESC_OFFSET + EARLY_MODE_INFO_SIZE; #else hw_hdr_offset = TXDESC_OFFSET; #endif #endif pframe = ((struct xmit_frame *)pxmitframe)->buf_addr + hw_hdr_offset; /* start to encrypt each fragment */ if ((pattrib->encrypt == _AES_) || (pattrib->encrypt == _CCMP_256_)) { if (IS_MCAST(pattrib->ra)) prwskey = psecuritypriv->dot118021XGrpKey[psecuritypriv->dot118021XGrpKeyid].skey; else { prwskey = pattrib->dot118021x_UncstKey.skey; } #ifdef CONFIG_TDLS { /* Swencryption */ struct sta_info *ptdls_sta; ptdls_sta = rtw_get_stainfo(&padapter->stapriv, &pattrib->dst[0]); if ((ptdls_sta != NULL) && (ptdls_sta->tdls_sta_state & TDLS_LINKED_STATE)) { RTW_INFO("[%s] for tdls link\n", __FUNCTION__); prwskey = &ptdls_sta->tpk.tk[0]; } } #endif /* CONFIG_TDLS */ prwskeylen = (pattrib->encrypt == _CCMP_256_) ? 32 : 16; for (curfragnum = 0; curfragnum < pattrib->nr_frags; curfragnum++) { if ((curfragnum + 1) == pattrib->nr_frags) { /* the last fragment */ plen = pattrib->last_txcmdsz - pattrib->hdrlen - pattrib->iv_len - pattrib->icv_len; _rtw_ccmp_encrypt(prwskey, prwskeylen, pattrib->hdrlen, pframe, plen); } else { plen = pxmitpriv->frag_len - pattrib->hdrlen - pattrib->iv_len - pattrib->icv_len; _rtw_ccmp_encrypt(prwskey, prwskeylen, pattrib->hdrlen, pframe, plen); pframe += pxmitpriv->frag_len; pframe = (u8 *)RND4((SIZE_PTR)(pframe)); } } AES_SW_ENC_CNT_INC(psecuritypriv, pattrib->ra); } return res; } #else u32 rtw_aes_encrypt(_adapter *padapter, u8 *pxmitframe) { /* exclude ICV */ /*static*/ /* unsigned char message[MAX_MSG_SIZE]; */ /* Intermediate Buffers */ sint curfragnum, length; u32 prwskeylen; u8 *pframe, *prwskey; /* , *payload,*iv */ u8 hw_hdr_offset = 0; /* struct sta_info *stainfo=NULL; */ struct pkt_attrib *pattrib = &((struct xmit_frame *)pxmitframe)->attrib; struct security_priv *psecuritypriv = &padapter->securitypriv; struct xmit_priv *pxmitpriv = &padapter->xmitpriv; /* uint offset = 0; */ u32 res = _SUCCESS; if (((struct xmit_frame *)pxmitframe)->buf_addr == NULL) return _FAIL; #ifdef CONFIG_USB_TX_AGGREGATION hw_hdr_offset = TXDESC_SIZE + (((struct xmit_frame *)pxmitframe)->pkt_offset * PACKET_OFFSET_SZ); #else #ifdef CONFIG_TX_EARLY_MODE hw_hdr_offset = TXDESC_OFFSET + EARLY_MODE_INFO_SIZE; #else hw_hdr_offset = TXDESC_OFFSET; #endif #endif pframe = ((struct xmit_frame *)pxmitframe)->buf_addr + hw_hdr_offset; /* 4 start to encrypt each fragment */ if ((pattrib->encrypt == _AES_)) { /* if(pattrib->psta) { stainfo = pattrib->psta; } else { RTW_INFO("%s, call rtw_get_stainfo()\n", __func__); stainfo=rtw_get_stainfo(&padapter->stapriv ,&pattrib->ra[0] ); } */ /* if (stainfo!=NULL) */ { /* if(!(stainfo->state &WIFI_ASOC_STATE)) { RTW_INFO("%s, psta->state(0x%x) != WIFI_ASOC_STATE\n", __func__, stainfo->state); return _FAIL; } */ if (IS_MCAST(pattrib->ra)) prwskey = psecuritypriv->dot118021XGrpKey[psecuritypriv->dot118021XGrpKeyid].skey; else { /* prwskey=&stainfo->dot118021x_UncstKey.skey[0]; */ prwskey = pattrib->dot118021x_UncstKey.skey; } #ifdef CONFIG_TDLS { /* Swencryption */ struct sta_info *ptdls_sta; ptdls_sta = rtw_get_stainfo(&padapter->stapriv , &pattrib->dst[0]); if ((ptdls_sta != NULL) && (ptdls_sta->tdls_sta_state & TDLS_LINKED_STATE)) { RTW_INFO("[%s] for tdls link\n", __FUNCTION__); prwskey = &ptdls_sta->tpk.tk[0]; } } #endif /* CONFIG_TDLS */ prwskeylen = 16; for (curfragnum = 0; curfragnum < pattrib->nr_frags; curfragnum++) { if ((curfragnum + 1) == pattrib->nr_frags) { /* 4 the last fragment */ length = pattrib->last_txcmdsz - pattrib->hdrlen - pattrib->iv_len - pattrib->icv_len; aes_cipher(prwskey, pattrib->hdrlen, pframe, length); } else { length = pxmitpriv->frag_len - pattrib->hdrlen - pattrib->iv_len - pattrib->icv_len ; aes_cipher(prwskey, pattrib->hdrlen, pframe, length); pframe += pxmitpriv->frag_len; pframe = (u8 *)RND4((SIZE_PTR)(pframe)); } } AES_SW_ENC_CNT_INC(psecuritypriv, pattrib->ra); } /* else{ RTW_INFO("%s, psta==NUL\n", __func__); res=_FAIL; } */ } return res; } #endif #if (NEW_CRYPTO == 0) static sint aes_decipher(u8 *key, uint hdrlen, u8 *pframe, uint plen) { static u8 message[MAX_MSG_SIZE]; uint qc_exists, a4_exists, i, j, payload_remainder, num_blocks, payload_index; sint res = _SUCCESS; u8 pn_vector[6]; u8 mic_iv[16]; u8 mic_header1[16]; u8 mic_header2[16]; u8 ctr_preload[16]; /* Intermediate Buffers */ u8 chain_buffer[16]; u8 aes_out[16]; u8 padded_buffer[16]; u8 mic[8]; /* uint offset = 0; */ uint frtype = GetFrameType(pframe); uint frsubtype = get_frame_sub_type(pframe); frsubtype = frsubtype >> 4; _rtw_memset((void *)mic_iv, 0, 16); _rtw_memset((void *)mic_header1, 0, 16); _rtw_memset((void *)mic_header2, 0, 16); _rtw_memset((void *)ctr_preload, 0, 16); _rtw_memset((void *)chain_buffer, 0, 16); _rtw_memset((void *)aes_out, 0, 16); _rtw_memset((void *)padded_buffer, 0, 16); /* start to decrypt the payload */ num_blocks = (plen - 8) / 16; /* (plen including LLC, payload_length and mic ) */ payload_remainder = (plen - 8) % 16; pn_vector[0] = pframe[hdrlen]; pn_vector[1] = pframe[hdrlen + 1]; pn_vector[2] = pframe[hdrlen + 4]; pn_vector[3] = pframe[hdrlen + 5]; pn_vector[4] = pframe[hdrlen + 6]; pn_vector[5] = pframe[hdrlen + 7]; if ((hdrlen == WLAN_HDR_A3_LEN) || (hdrlen == WLAN_HDR_A3_QOS_LEN)) a4_exists = 0; else a4_exists = 1; if ( ((frtype | frsubtype) == WIFI_DATA_CFACK) || ((frtype | frsubtype) == WIFI_DATA_CFPOLL) || ((frtype | frsubtype) == WIFI_DATA_CFACKPOLL)) { qc_exists = 1; if (hdrlen != WLAN_HDR_A3_QOS_LEN && hdrlen != WLAN_HDR_A4_QOS_LEN) hdrlen += 2; } /* only for data packet . add for CONFIG_IEEE80211W, none 11w also can use */ else if ((frtype == WIFI_DATA) && ((frsubtype == 0x08) || (frsubtype == 0x09) || (frsubtype == 0x0a) || (frsubtype == 0x0b))) { if (hdrlen != WLAN_HDR_A3_QOS_LEN && hdrlen != WLAN_HDR_A4_QOS_LEN) hdrlen += 2; qc_exists = 1; } else qc_exists = 0; /* now, decrypt pframe with hdrlen offset and plen long */ payload_index = hdrlen + 8; /* 8 is for extiv */ for (i = 0; i < num_blocks; i++) { construct_ctr_preload( ctr_preload, a4_exists, qc_exists, pframe, pn_vector, i + 1, frtype /* add for CONFIG_IEEE80211W, none 11w also can use */ ); aes128k128d(key, ctr_preload, aes_out); bitwise_xor(aes_out, &pframe[payload_index], chain_buffer); for (j = 0; j < 16; j++) pframe[payload_index++] = chain_buffer[j]; } if (payload_remainder > 0) { /* If there is a short final block, then pad it,*/ /* encrypt it and copy the unpadded part back */ construct_ctr_preload( ctr_preload, a4_exists, qc_exists, pframe, pn_vector, num_blocks + 1, frtype /* add for CONFIG_IEEE80211W, none 11w also can use */ ); for (j = 0; j < 16; j++) padded_buffer[j] = 0x00; for (j = 0; j < payload_remainder; j++) padded_buffer[j] = pframe[payload_index + j]; aes128k128d(key, ctr_preload, aes_out); bitwise_xor(aes_out, padded_buffer, chain_buffer); for (j = 0; j < payload_remainder; j++) pframe[payload_index++] = chain_buffer[j]; } /* start to calculate the mic */ if ((hdrlen + plen + 8) <= MAX_MSG_SIZE) _rtw_memcpy((void *)message, pframe, (hdrlen + plen + 8)); /* 8 is for ext iv len */ pn_vector[0] = pframe[hdrlen]; pn_vector[1] = pframe[hdrlen + 1]; pn_vector[2] = pframe[hdrlen + 4]; pn_vector[3] = pframe[hdrlen + 5]; pn_vector[4] = pframe[hdrlen + 6]; pn_vector[5] = pframe[hdrlen + 7]; construct_mic_iv( mic_iv, qc_exists, a4_exists, message, plen - 8, pn_vector, frtype /* add for CONFIG_IEEE80211W, none 11w also can use */ ); construct_mic_header1( mic_header1, hdrlen, message, frtype /* add for CONFIG_IEEE80211W, none 11w also can use */ ); construct_mic_header2( mic_header2, message, a4_exists, qc_exists ); payload_remainder = (plen - 8) % 16; num_blocks = (plen - 8) / 16; /* Find start of payload */ payload_index = (hdrlen + 8); /* Calculate MIC */ aes128k128d(key, mic_iv, aes_out); bitwise_xor(aes_out, mic_header1, chain_buffer); aes128k128d(key, chain_buffer, aes_out); bitwise_xor(aes_out, mic_header2, chain_buffer); aes128k128d(key, chain_buffer, aes_out); for (i = 0; i < num_blocks; i++) { bitwise_xor(aes_out, &message[payload_index], chain_buffer); payload_index += 16; aes128k128d(key, chain_buffer, aes_out); } /* Add on the final payload block if it needs padding */ if (payload_remainder > 0) { for (j = 0; j < 16; j++) padded_buffer[j] = 0x00; for (j = 0; j < payload_remainder; j++) padded_buffer[j] = message[payload_index++]; bitwise_xor(aes_out, padded_buffer, chain_buffer); aes128k128d(key, chain_buffer, aes_out); } for (j = 0 ; j < 8; j++) mic[j] = aes_out[j]; /* Insert MIC into payload */ for (j = 0; j < 8; j++) message[payload_index + j] = mic[j]; payload_index = hdrlen + 8; for (i = 0; i < num_blocks; i++) { construct_ctr_preload( ctr_preload, a4_exists, qc_exists, message, pn_vector, i + 1, frtype); /* add for CONFIG_IEEE80211W, none 11w also can use */ aes128k128d(key, ctr_preload, aes_out); bitwise_xor(aes_out, &message[payload_index], chain_buffer); for (j = 0; j < 16; j++) message[payload_index++] = chain_buffer[j]; } if (payload_remainder > 0) { /* If there is a short final block, then pad it,*/ /* encrypt it and copy the unpadded part back */ construct_ctr_preload( ctr_preload, a4_exists, qc_exists, message, pn_vector, num_blocks + 1, frtype); /* add for CONFIG_IEEE80211W, none 11w also can use */ for (j = 0; j < 16; j++) padded_buffer[j] = 0x00; for (j = 0; j < payload_remainder; j++) padded_buffer[j] = message[payload_index + j]; aes128k128d(key, ctr_preload, aes_out); bitwise_xor(aes_out, padded_buffer, chain_buffer); for (j = 0; j < payload_remainder; j++) message[payload_index++] = chain_buffer[j]; } /* Encrypt the MIC */ construct_ctr_preload( ctr_preload, a4_exists, qc_exists, message, pn_vector, 0, frtype); /* add for CONFIG_IEEE80211W, none 11w also can use */ for (j = 0; j < 16; j++) padded_buffer[j] = 0x00; for (j = 0; j < 8; j++) padded_buffer[j] = message[j + hdrlen + 8 + plen - 8]; aes128k128d(key, ctr_preload, aes_out); bitwise_xor(aes_out, padded_buffer, chain_buffer); for (j = 0; j < 8; j++) message[payload_index++] = chain_buffer[j]; /* compare the mic */ for (i = 0; i < 8; i++) { if (pframe[hdrlen + 8 + plen - 8 + i] != message[hdrlen + 8 + plen - 8 + i]) { RTW_INFO("aes_decipher:mic check error mic[%d]: pframe(%x) != message(%x)\n", i, pframe[hdrlen + 8 + plen - 8 + i], message[hdrlen + 8 + plen - 8 + i]); res = _FAIL; } } return res; } #endif /* (NEW_CRYPTO == 0) */ #if NEW_CRYPTO u32 rtw_aes_decrypt(_adapter *padapter, u8 *precvframe) { struct sta_info *stainfo; struct rx_pkt_attrib *prxattrib = &((union recv_frame *)precvframe)->u.hdr.attrib; struct security_priv *psecuritypriv = &padapter->securitypriv; u8 *pframe; u8 *prwskey; u32 res = _SUCCESS; pframe = (unsigned char *)((union recv_frame *)precvframe)->u.hdr.rx_data; /* start to encrypt each fragment */ if ((prxattrib->encrypt == _AES_) || (prxattrib->encrypt == _CCMP_256_)) { stainfo = rtw_get_stainfo(&padapter->stapriv, &prxattrib->ta[0]); if (stainfo != NULL) { if (IS_MCAST(prxattrib->ra)) { static systime start = 0; static u32 no_gkey_bc_cnt = 0; static u32 no_gkey_mc_cnt = 0; if ((!MLME_IS_MESH(padapter) && psecuritypriv->binstallGrpkey == _FALSE) #ifdef CONFIG_RTW_MESH || !(stainfo->gtk_bmp | BIT(prxattrib->key_index)) #endif ) { res = _FAIL; if (start == 0) start = rtw_get_current_time(); if (is_broadcast_mac_addr(prxattrib->ra)) no_gkey_bc_cnt++; else no_gkey_mc_cnt++; if (rtw_get_passing_time_ms(start) > 1000) { if (no_gkey_bc_cnt || no_gkey_mc_cnt) { RTW_PRINT(FUNC_ADPT_FMT" no_gkey_bc_cnt:%u, no_gkey_mc_cnt:%u\n", FUNC_ADPT_ARG(padapter), no_gkey_bc_cnt, no_gkey_mc_cnt); } start = rtw_get_current_time(); no_gkey_bc_cnt = 0; no_gkey_mc_cnt = 0; } goto exit; } if (no_gkey_bc_cnt || no_gkey_mc_cnt) { RTW_PRINT(FUNC_ADPT_FMT" gkey installed. no_gkey_bc_cnt:%u, no_gkey_mc_cnt:%u\n", FUNC_ADPT_ARG(padapter), no_gkey_bc_cnt, no_gkey_mc_cnt); } start = 0; no_gkey_bc_cnt = 0; no_gkey_mc_cnt = 0; #ifdef CONFIG_RTW_MESH if (MLME_IS_MESH(padapter)) { /* TODO: multiple GK? */ prwskey = &stainfo->gtk.skey[0]; } else #endif { prwskey = psecuritypriv->dot118021XGrpKey[prxattrib->key_index].skey; if (psecuritypriv->dot118021XGrpKeyid != prxattrib->key_index) { RTW_DBG("not match packet_index=%d, install_index=%d\n" , prxattrib->key_index, psecuritypriv->dot118021XGrpKeyid); res = _FAIL; goto exit; } } } else prwskey = &stainfo->dot118021x_UncstKey.skey[0]; res = _rtw_ccmp_decrypt(prwskey, prxattrib->encrypt == _CCMP_256_ ? 32 : 16, prxattrib->hdrlen, pframe, ((union recv_frame *)precvframe)->u.hdr.len); AES_SW_DEC_CNT_INC(psecuritypriv, prxattrib->ra); } else { res = _FAIL; } } exit: return res; } #else u32 rtw_aes_decrypt(_adapter *padapter, u8 *precvframe) { /* exclude ICV */ /*static*/ /* unsigned char message[MAX_MSG_SIZE]; */ /* Intermediate Buffers */ sint length; u8 *pframe, *prwskey; /* , *payload,*iv */ struct sta_info *stainfo; struct rx_pkt_attrib *prxattrib = &((union recv_frame *)precvframe)->u.hdr.attrib; struct security_priv *psecuritypriv = &padapter->securitypriv; /* struct recv_priv *precvpriv=&padapter->recvpriv; */ u32 res = _SUCCESS; pframe = (unsigned char *)((union recv_frame *)precvframe)->u.hdr.rx_data; /* 4 start to encrypt each fragment */ if ((prxattrib->encrypt == _AES_)) { stainfo = rtw_get_stainfo(&padapter->stapriv , &prxattrib->ta[0]); if (stainfo != NULL) { if (IS_MCAST(prxattrib->ra)) { static systime start = 0; static u32 no_gkey_bc_cnt = 0; static u32 no_gkey_mc_cnt = 0; /* RTW_INFO("rx bc/mc packets, to perform sw rtw_aes_decrypt\n"); */ /* prwskey = psecuritypriv->dot118021XGrpKey[psecuritypriv->dot118021XGrpKeyid].skey; */ if ((!MLME_IS_MESH(padapter) && psecuritypriv->binstallGrpkey == _FALSE) #ifdef CONFIG_RTW_MESH || !(stainfo->gtk_bmp | BIT(prxattrib->key_index)) #endif ) { res = _FAIL; if (start == 0) start = rtw_get_current_time(); if (is_broadcast_mac_addr(prxattrib->ra)) no_gkey_bc_cnt++; else no_gkey_mc_cnt++; if (rtw_get_passing_time_ms(start) > 1000) { if (no_gkey_bc_cnt || no_gkey_mc_cnt) { RTW_PRINT(FUNC_ADPT_FMT" no_gkey_bc_cnt:%u, no_gkey_mc_cnt:%u\n", FUNC_ADPT_ARG(padapter), no_gkey_bc_cnt, no_gkey_mc_cnt); } start = rtw_get_current_time(); no_gkey_bc_cnt = 0; no_gkey_mc_cnt = 0; } goto exit; } if (no_gkey_bc_cnt || no_gkey_mc_cnt) { RTW_PRINT(FUNC_ADPT_FMT" gkey installed. no_gkey_bc_cnt:%u, no_gkey_mc_cnt:%u\n", FUNC_ADPT_ARG(padapter), no_gkey_bc_cnt, no_gkey_mc_cnt); } start = 0; no_gkey_bc_cnt = 0; no_gkey_mc_cnt = 0; #ifdef CONFIG_RTW_MESH if (MLME_IS_MESH(padapter)) { /* TODO: multiple GK? */ prwskey = &stainfo->gtk.skey[0]; } else #endif { prwskey = psecuritypriv->dot118021XGrpKey[prxattrib->key_index].skey; if (psecuritypriv->dot118021XGrpKeyid != prxattrib->key_index) { RTW_DBG("not match packet_index=%d, install_index=%d\n" , prxattrib->key_index, psecuritypriv->dot118021XGrpKeyid); res = _FAIL; goto exit; } } } else prwskey = &stainfo->dot118021x_UncstKey.skey[0]; length = ((union recv_frame *)precvframe)->u.hdr.len - prxattrib->hdrlen - prxattrib->iv_len; #if 0 /* add for CONFIG_IEEE80211W, debug */ if (0) printk("@@@@@@@@@@@@@@@@@@ length=%d, prxattrib->hdrlen=%d, prxattrib->pkt_len=%d\n" , length, prxattrib->hdrlen, prxattrib->pkt_len); if (0) { int no; /* test print PSK */ printk("PSK key below:\n"); for (no = 0; no < 16; no++) printk(" %02x ", prwskey[no]); printk("\n"); } if (0) { int no; /* test print PSK */ printk("frame:\n"); for (no = 0; no < prxattrib->pkt_len; no++) printk(" %02x ", pframe[no]); printk("\n"); } #endif res = aes_decipher(prwskey, prxattrib->hdrlen, pframe, length); AES_SW_DEC_CNT_INC(psecuritypriv, prxattrib->ra); } else { res = _FAIL; } } exit: return res; } #endif #ifdef CONFIG_RTW_MESH_AEK /* for AES-SIV, wrapper to ase_siv_encrypt and aes_siv_decrypt */ int rtw_aes_siv_encrypt(const u8 *key, size_t key_len, const u8 *pw, size_t pwlen, size_t num_elem, const u8 *addr[], const size_t *len, u8 *out) { return _aes_siv_encrypt(key, key_len, pw, pwlen, num_elem, addr, len, out); } int rtw_aes_siv_decrypt(const u8 *key, size_t key_len, const u8 *iv_crypt, size_t iv_c_len, size_t num_elem, const u8 *addr[], const size_t *len, u8 *out) { return _aes_siv_decrypt(key, key_len, iv_crypt, iv_c_len, num_elem, addr, len, out); } #endif /* CONFIG_RTW_MESH_AEK */ #ifdef CONFIG_TDLS void wpa_tdls_generate_tpk(_adapter *padapter, void *sta) { struct sta_info *psta = (struct sta_info *)sta; struct mlme_priv *pmlmepriv = &padapter->mlmepriv; _tdls_generate_tpk(psta, adapter_mac_addr(padapter), get_bssid(pmlmepriv)); } /** * wpa_tdls_ftie_mic - Calculate TDLS FTIE MIC * @kck: TPK-KCK * @lnkid: Pointer to the beginning of Link Identifier IE * @rsnie: Pointer to the beginning of RSN IE used for handshake * @timeoutie: Pointer to the beginning of Timeout IE used for handshake * @ftie: Pointer to the beginning of FT IE * @mic: Pointer for writing MIC * * Calculate MIC for TDLS frame. */ int wpa_tdls_ftie_mic(u8 *kck, u8 trans_seq, u8 *lnkid, u8 *rsnie, u8 *timeoutie, u8 *ftie, u8 *mic) { u8 *buf, *pos; struct wpa_tdls_ftie *_ftie; struct wpa_tdls_lnkid *_lnkid; int ret; int len = 2 * ETH_ALEN + 1 + 2 + lnkid[1] + 2 + rsnie[1] + 2 + timeoutie[1] + 2 + ftie[1]; buf = rtw_zmalloc(len); if (!buf) { RTW_INFO("TDLS: No memory for MIC calculation\n"); return -1; } pos = buf; _lnkid = (struct wpa_tdls_lnkid *) lnkid; /* 1) TDLS initiator STA MAC address */ _rtw_memcpy(pos, _lnkid->init_sta, ETH_ALEN); pos += ETH_ALEN; /* 2) TDLS responder STA MAC address */ _rtw_memcpy(pos, _lnkid->resp_sta, ETH_ALEN); pos += ETH_ALEN; /* 3) Transaction Sequence number */ *pos++ = trans_seq; /* 4) Link Identifier IE */ _rtw_memcpy(pos, lnkid, 2 + lnkid[1]); pos += 2 + lnkid[1]; /* 5) RSN IE */ _rtw_memcpy(pos, rsnie, 2 + rsnie[1]); pos += 2 + rsnie[1]; /* 6) Timeout Interval IE */ _rtw_memcpy(pos, timeoutie, 2 + timeoutie[1]); pos += 2 + timeoutie[1]; /* 7) FTIE, with the MIC field of the FTIE set to 0 */ _rtw_memcpy(pos, ftie, 2 + ftie[1]); _ftie = (struct wpa_tdls_ftie *) pos; _rtw_memset(_ftie->mic, 0, TDLS_MIC_LEN); pos += 2 + ftie[1]; /* ret = omac1_aes_128(kck, buf, pos - buf, mic); */ ret = _bip_ccmp_protect(kck, 16, buf, pos - buf, mic); rtw_mfree(buf, len); return ret; } /** * wpa_tdls_teardown_ftie_mic - Calculate TDLS TEARDOWN FTIE MIC * @kck: TPK-KCK * @lnkid: Pointer to the beginning of Link Identifier IE * @reason: Reason code of TDLS Teardown * @dialog_token: Dialog token that was used in the MIC calculation for TPK Handshake Message 3 * @trans_seq: Transaction Sequence number (1 octet) which shall be set to the value 4 * @ftie: Pointer to the beginning of FT IE * @mic: Pointer for writing MIC * * Calculate MIC for TDLS TEARDOWN frame according to Section 10.22.5 in IEEE 802.11 - 2012. */ int wpa_tdls_teardown_ftie_mic(u8 *kck, u8 *lnkid, u16 reason, u8 dialog_token, u8 trans_seq, u8 *ftie, u8 *mic) { u8 *buf, *pos; struct wpa_tdls_ftie *_ftie; int ret; int len = 2 + lnkid[1] + 2 + 1 + 1 + 2 + ftie[1]; buf = rtw_zmalloc(len); if (!buf) { RTW_INFO("TDLS: No memory for MIC calculation\n"); return -1; } pos = buf; /* 1) Link Identifier IE */ _rtw_memcpy(pos, lnkid, 2 + lnkid[1]); pos += 2 + lnkid[1]; /* 2) Reason Code */ _rtw_memcpy(pos, (u8 *)&reason, 2); pos += 2; /* 3) Dialog Token */ *pos++ = dialog_token; /* 4) Transaction Sequence number */ *pos++ = trans_seq; /* 5) FTIE, with the MIC field of the FTIE set to 0 */ _rtw_memcpy(pos, ftie, 2 + ftie[1]); _ftie = (struct wpa_tdls_ftie *) pos; _rtw_memset(_ftie->mic, 0, TDLS_MIC_LEN); pos += 2 + ftie[1]; /* ret = omac1_aes_128(kck, buf, pos - buf, mic); */ ret = _bip_ccmp_protect(kck, 16, buf, pos - buf, mic); rtw_mfree(buf, len); return ret; } int tdls_verify_mic(u8 *kck, u8 trans_seq, u8 *lnkid, u8 *rsnie, u8 *timeoutie, u8 *ftie) { u8 *buf, *pos; int len; u8 mic[16]; int ret; u8 *rx_ftie, *tmp_ftie; if (lnkid == NULL || rsnie == NULL || timeoutie == NULL || ftie == NULL) return _FAIL; len = 2 * ETH_ALEN + 1 + 2 + 18 + 2 + *(rsnie + 1) + 2 + *(timeoutie + 1) + 2 + *(ftie + 1); buf = rtw_zmalloc(len); if (buf == NULL) return _FAIL; pos = buf; /* 1) TDLS initiator STA MAC address */ _rtw_memcpy(pos, lnkid + ETH_ALEN + 2, ETH_ALEN); pos += ETH_ALEN; /* 2) TDLS responder STA MAC address */ _rtw_memcpy(pos, lnkid + 2 * ETH_ALEN + 2, ETH_ALEN); pos += ETH_ALEN; /* 3) Transaction Sequence number */ *pos++ = trans_seq; /* 4) Link Identifier IE */ _rtw_memcpy(pos, lnkid, 2 + 18); pos += 2 + 18; /* 5) RSN IE */ _rtw_memcpy(pos, rsnie, 2 + *(rsnie + 1)); pos += 2 + *(rsnie + 1); /* 6) Timeout Interval IE */ _rtw_memcpy(pos, timeoutie, 2 + *(timeoutie + 1)); pos += 2 + *(timeoutie + 1); /* 7) FTIE, with the MIC field of the FTIE set to 0 */ _rtw_memcpy(pos, ftie, 2 + *(ftie + 1)); pos += 2; tmp_ftie = (u8 *)(pos + 2); _rtw_memset(tmp_ftie, 0, 16); pos += *(ftie + 1); /* ret = omac1_aes_128(kck, buf, pos - buf, mic); */ ret = _bip_ccmp_protect(kck, 16, buf, pos - buf, mic); rtw_mfree(buf, len); if (ret == _FAIL) return _FAIL; rx_ftie = ftie + 4; if (_rtw_memcmp2(mic, rx_ftie, 16) == 0) { /* Valid MIC */ return _SUCCESS; } /* Invalid MIC */ RTW_INFO("[%s] Invalid MIC\n", __FUNCTION__); return _FAIL; } #endif /* CONFIG_TDLS */ /* Restore HW wep key setting according to key_mask */ void rtw_sec_restore_wep_key(_adapter *adapter) { struct security_priv *securitypriv = &(adapter->securitypriv); sint keyid; if ((_WEP40_ == securitypriv->dot11PrivacyAlgrthm) || (_WEP104_ == securitypriv->dot11PrivacyAlgrthm)) { for (keyid = 0; keyid < 4; keyid++) { if (securitypriv->key_mask & BIT(keyid)) { if (keyid == securitypriv->dot11PrivacyKeyIndex) rtw_set_key(adapter, securitypriv, keyid, 1, _FALSE); else rtw_set_key(adapter, securitypriv, keyid, 0, _FALSE); } } } } u8 rtw_handle_tkip_countermeasure(_adapter *adapter, const char *caller) { struct security_priv *securitypriv = &(adapter->securitypriv); u8 status = _SUCCESS; if (securitypriv->btkip_countermeasure == _TRUE) { u32 passing_ms = rtw_get_passing_time_ms(securitypriv->btkip_countermeasure_time); if (passing_ms > 60 * 1000) { RTW_PRINT("%s("ADPT_FMT") countermeasure time:%ds > 60s\n", caller, ADPT_ARG(adapter), passing_ms / 1000); securitypriv->btkip_countermeasure = _FALSE; securitypriv->btkip_countermeasure_time = 0; } else { RTW_PRINT("%s("ADPT_FMT") countermeasure time:%ds < 60s\n", caller, ADPT_ARG(adapter), passing_ms / 1000); status = _FAIL; } } return status; } #ifdef CONFIG_WOWLAN u16 rtw_cal_crc16(u8 data, u16 crc) { u8 shift_in, data_bit; u8 crc_bit4, crc_bit11, crc_bit15; u16 crc_result; int index; for (index = 0; index < 8; index++) { crc_bit15 = ((crc & BIT15) ? 1 : 0); data_bit = (data & (BIT0 << index) ? 1 : 0); shift_in = crc_bit15 ^ data_bit; /*printf("crc_bit15=%d, DataBit=%d, shift_in=%d\n", * crc_bit15, data_bit, shift_in);*/ crc_result = crc << 1; if (shift_in == 0) crc_result &= (~BIT0); else crc_result |= BIT0; /*printf("CRC =%x\n",CRC_Result);*/ crc_bit11 = ((crc & BIT11) ? 1 : 0) ^ shift_in; if (crc_bit11 == 0) crc_result &= (~BIT12); else crc_result |= BIT12; /*printf("bit12 CRC =%x\n",CRC_Result);*/ crc_bit4 = ((crc & BIT4) ? 1 : 0) ^ shift_in; if (crc_bit4 == 0) crc_result &= (~BIT5); else crc_result |= BIT5; /* printf("bit5 CRC =%x\n",CRC_Result); */ /* repeat using the last result*/ crc = crc_result; } return crc; } /* * function name :rtw_calc_crc * * input: char* pattern , pattern size * */ u16 rtw_calc_crc(u8 *pdata, int length) { u16 crc = 0xffff; int i; for (i = 0; i < length; i++) crc = rtw_cal_crc16(pdata[i], crc); /* get 1' complement */ crc = ~crc; return crc; } #endif /*CONFIG_WOWLAN*/ u32 rtw_calc_crc32(u8 *data, size_t len) { size_t i; u32 crc = 0xFFFFFFFF; if (bcrc32initialized == 0) crc32_init(); for (i = 0; i < len; i++) crc = crc32_table[(crc ^ data[i]) & 0xff] ^ (crc >> 8); /* return 1' complement */ return ~crc; } /** * rtw_gcmp_encrypt - * @padapter: * @pxmitframe: * */ u32 rtw_gcmp_encrypt(_adapter *padapter, u8 *pxmitframe) { struct pkt_attrib *pattrib = &((struct xmit_frame *)pxmitframe)->attrib; struct security_priv *psecuritypriv = &padapter->securitypriv; struct xmit_priv *pxmitpriv = &padapter->xmitpriv; /* Intermediate Buffers */ sint curfragnum, plen; u32 prwskeylen; u8 *pframe = NULL; u8 *prwskey = NULL; u8 hw_hdr_offset = 0; u32 res = _SUCCESS; if (((struct xmit_frame *)pxmitframe)->buf_addr == NULL) return _FAIL; #ifdef CONFIG_USB_TX_AGGREGATION hw_hdr_offset = TXDESC_SIZE + (((struct xmit_frame *)pxmitframe)->pkt_offset * PACKET_OFFSET_SZ); #else #ifdef CONFIG_TX_EARLY_MODE hw_hdr_offset = TXDESC_OFFSET + EARLY_MODE_INFO_SIZE; #else hw_hdr_offset = TXDESC_OFFSET; #endif #endif pframe = ((struct xmit_frame *)pxmitframe)->buf_addr + hw_hdr_offset; /* start to encrypt each fragment */ if ((pattrib->encrypt == _GCMP_) || (pattrib->encrypt == _GCMP_256_)) { if (IS_MCAST(pattrib->ra)) prwskey = psecuritypriv->dot118021XGrpKey[psecuritypriv->dot118021XGrpKeyid].skey; else prwskey = pattrib->dot118021x_UncstKey.skey; prwskeylen = (pattrib->encrypt == _GCMP_256_) ? 32 : 16; for (curfragnum = 0; curfragnum < pattrib->nr_frags; curfragnum++) { if ((curfragnum + 1) == pattrib->nr_frags) { /* the last fragment */ plen = pattrib->last_txcmdsz - pattrib->hdrlen - pattrib->iv_len - pattrib->icv_len; _rtw_gcmp_encrypt(prwskey, prwskeylen, pattrib->hdrlen, pframe, plen); } else { plen = pxmitpriv->frag_len - pattrib->hdrlen - pattrib->iv_len - pattrib->icv_len; _rtw_gcmp_encrypt(prwskey, prwskeylen, pattrib->hdrlen, pframe, plen); pframe += pxmitpriv->frag_len; pframe = (u8 *)RND4((SIZE_PTR)(pframe)); } } GCMP_SW_ENC_CNT_INC(psecuritypriv, pattrib->ra); } return res; } u32 rtw_gcmp_decrypt(_adapter *padapter, u8 *precvframe) { u32 prwskeylen; u8 * pframe,*prwskey; struct sta_info *stainfo; struct rx_pkt_attrib *prxattrib = &((union recv_frame *)precvframe)->u.hdr.attrib; struct security_priv *psecuritypriv = &padapter->securitypriv; u32 res = _SUCCESS; pframe = (unsigned char *)((union recv_frame *)precvframe)->u.hdr.rx_data; if ((prxattrib->encrypt == _GCMP_) || (prxattrib->encrypt == _GCMP_256_)) { stainfo = rtw_get_stainfo(&padapter->stapriv, &prxattrib->ta[0]); if (stainfo != NULL) { if (IS_MCAST(prxattrib->ra)) { static systime start = 0; static u32 no_gkey_bc_cnt = 0; static u32 no_gkey_mc_cnt = 0; if ((!MLME_IS_MESH(padapter) && psecuritypriv->binstallGrpkey == _FALSE) #ifdef CONFIG_RTW_MESH || !(stainfo->gtk_bmp | BIT(prxattrib->key_index)) #endif ) { res = _FAIL; if (start == 0) start = rtw_get_current_time(); if (is_broadcast_mac_addr(prxattrib->ra)) no_gkey_bc_cnt++; else no_gkey_mc_cnt++; if (rtw_get_passing_time_ms(start) > 1000) { if (no_gkey_bc_cnt || no_gkey_mc_cnt) { RTW_PRINT(FUNC_ADPT_FMT" no_gkey_bc_cnt:%u, no_gkey_mc_cnt:%u\n", FUNC_ADPT_ARG(padapter), no_gkey_bc_cnt, no_gkey_mc_cnt); } start = rtw_get_current_time(); no_gkey_bc_cnt = 0; no_gkey_mc_cnt = 0; } goto exit; } if (no_gkey_bc_cnt || no_gkey_mc_cnt) { RTW_PRINT(FUNC_ADPT_FMT" gkey installed. no_gkey_bc_cnt:%u, no_gkey_mc_cnt:%u\n", FUNC_ADPT_ARG(padapter), no_gkey_bc_cnt, no_gkey_mc_cnt); } start = 0; no_gkey_bc_cnt = 0; no_gkey_mc_cnt = 0; #ifdef CONFIG_RTW_MESH if (MLME_IS_MESH(padapter)) { /* TODO: multiple GK? */ prwskey = &stainfo->gtk.skey[0]; } else #endif { prwskey = psecuritypriv->dot118021XGrpKey[prxattrib->key_index].skey; if (psecuritypriv->dot118021XGrpKeyid != prxattrib->key_index) { RTW_DBG("not match packet_index=%d, install_index=%d\n" , prxattrib->key_index, psecuritypriv->dot118021XGrpKeyid); res = _FAIL; goto exit; } } } else prwskey = &stainfo->dot118021x_UncstKey.skey[0]; res = _rtw_gcmp_decrypt(prwskey, prxattrib->encrypt == _GCMP_256_ ? 32 : 16, prxattrib->hdrlen, pframe, ((union recv_frame *)precvframe)->u.hdr.len); GCMP_SW_DEC_CNT_INC(psecuritypriv, prxattrib->ra); } else { res = _FAIL; } } exit: return res; } #ifdef CONFIG_IEEE80211W u8 rtw_calculate_bip_mic(enum security_type gmcs, u8 *whdr_pos, s32 len, const u8 *key, const u8 *data, size_t data_len, u8 *mic) { u8 res = _SUCCESS; if (gmcs == _BIP_CMAC_128_) { if (_bip_ccmp_protect(key, 16, data, data_len, mic) == _FALSE) { res = _FAIL; RTW_ERR("%s : _bip_ccmp_protect(128) fail!", __func__); } } else if (gmcs == _BIP_CMAC_256_) { if (_bip_ccmp_protect(key, 32, data, data_len, mic) == _FALSE) { res = _FAIL; RTW_ERR("%s : _bip_ccmp_protect(256) fail!", __func__); } } else if (gmcs == _BIP_GMAC_128_) { if (_bip_gcmp_protect(whdr_pos, len, key, 16, data, data_len, mic) == _FALSE) { res = _FAIL; RTW_ERR("%s : _bip_gcmp_protect(128) fail!", __func__); } } else if (gmcs == _BIP_GMAC_256_) { if (_bip_gcmp_protect(whdr_pos, len, key, 32, data, data_len, mic) == _FALSE) { res = _FAIL; RTW_ERR("%s : _bip_gcmp_protect(256) fail!", __func__); } } else { res = _FAIL; RTW_ERR("%s : unsupport dot11wCipher !\n", __func__); } return res; } u32 rtw_bip_verify(enum security_type gmcs, u16 pkt_len, u8 *whdr_pos, sint flen, const u8 *key, u16 keyid, u64 *ipn) { u8 * BIP_AAD,*mme; u32 res = _FAIL; uint len, ori_len; u16 pkt_keyid = 0; u64 pkt_ipn = 0; struct rtw_ieee80211_hdr *pwlanhdr; u8 mic[16]; u8 mic_len, mme_offset; mic_len = (gmcs == _BIP_CMAC_128_) ? 8 : 16; if (flen < WLAN_HDR_A3_LEN || flen - WLAN_HDR_A3_LEN < mic_len) return RTW_RX_HANDLED; mme_offset = (mic_len == 8) ? 18 : 26; mme = whdr_pos + flen - mme_offset; if (*mme != _MME_IE_) return RTW_RX_HANDLED; /* copy key index */ _rtw_memcpy(&pkt_keyid, mme + 2, 2); pkt_keyid = le16_to_cpu(pkt_keyid); if (pkt_keyid != keyid) { RTW_INFO("BIP key index error!\n"); return _FAIL; } /* save packet number */ _rtw_memcpy(&pkt_ipn, mme + 4, 6); pkt_ipn = le64_to_cpu(pkt_ipn); /* BIP packet number should bigger than previous BIP packet */ if (pkt_ipn <= *ipn) { /* wrap around? */ RTW_INFO("replay BIP packet\n"); return _FAIL; } ori_len = flen - WLAN_HDR_A3_LEN + BIP_AAD_SIZE; BIP_AAD = rtw_zmalloc(ori_len); if (BIP_AAD == NULL) { RTW_INFO("BIP AAD allocate fail\n"); return _FAIL; } /* mapping to wlan header */ pwlanhdr = (struct rtw_ieee80211_hdr *)whdr_pos; /* save the frame body + MME (w/o mic) */ _rtw_memcpy(BIP_AAD + BIP_AAD_SIZE, whdr_pos + WLAN_HDR_A3_LEN, flen - WLAN_HDR_A3_LEN - mic_len); /* conscruct AAD, copy frame control field */ _rtw_memcpy(BIP_AAD, &pwlanhdr->frame_ctl, 2); ClearRetry(BIP_AAD); ClearPwrMgt(BIP_AAD); ClearMData(BIP_AAD); /* conscruct AAD, copy address 1 to address 3 */ _rtw_memcpy(BIP_AAD + 2, pwlanhdr->addr1, 18); if (rtw_calculate_bip_mic(gmcs, whdr_pos, pkt_len, key, BIP_AAD, ori_len, mic) == _FAIL) goto BIP_exit; /* MIC field should be last 8 bytes of packet (packet without FCS) */ if (_rtw_memcmp(mic, whdr_pos + flen - mic_len, mic_len)) { *ipn = pkt_ipn; res = _SUCCESS; } else RTW_INFO("BIP MIC error!\n"); #if 0 /* management packet content */ { int pp; RTW_INFO("pkt: "); RTW_INFO_DUMP("", whdr_pos, flen); RTW_INFO("\n"); /* BIP AAD + management frame body + MME(MIC is zero) */ RTW_INFO("AAD+PKT: "); RTW_INFO_DUMP("", BIP_AAD, ori_len); RTW_INFO("\n"); /* show the MIC result */ RTW_INFO("mic: "); RTW_INFO_DUMP("", mic, mic_len); RTW_INFO("\n"); } #endif BIP_exit: rtw_mfree(BIP_AAD, ori_len); return res; } #endif /* CONFIG_IEEE80211W */