/****************************************************************************** * * Copyright(c) 2007 - 2017 Realtek Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * *****************************************************************************/ #ifndef __OSDEP_SERVICE_H_ #define __OSDEP_SERVICE_H_ #define _FAIL 0 #define _SUCCESS 1 #define RTW_RX_HANDLED 2 #define RTW_RFRAME_UNAVAIL 3 #define RTW_RFRAME_PKT_UNAVAIL 4 #define RTW_RBUF_UNAVAIL 5 #define RTW_RBUF_PKT_UNAVAIL 6 #define RTW_SDIO_READ_PORT_FAIL 7 #define RTW_ALREADY 8 #define RTW_RA_RESOLVING 9 #define RTW_BMC_NO_NEED 10 #define RTW_XBUF_UNAVAIL 11 #define RTW_TX_BALANCE 12 #define RTW_TX_WAIT_MORE_FRAME 13 /* #define RTW_STATUS_TIMEDOUT -110 */ #undef _TRUE #define _TRUE 1 #undef _FALSE #define _FALSE 0 #ifdef PLATFORM_FREEBSD #include #endif #ifdef PLATFORM_LINUX #include #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 11, 0)) #include #include #endif #include #include #endif #ifdef PLATFORM_OS_XP #include #include #endif #ifdef PLATFORM_OS_CE #include #include #endif /* #include */ #ifndef BIT #define BIT(x) (1 << (x)) #endif #ifndef BIT_ULL #define BIT_ULL(x) (1ULL << (x)) #endif #define CHECK_BIT(a, b) (!!((a) & (b))) #define BIT0 0x00000001 #define BIT1 0x00000002 #define BIT2 0x00000004 #define BIT3 0x00000008 #define BIT4 0x00000010 #define BIT5 0x00000020 #define BIT6 0x00000040 #define BIT7 0x00000080 #define BIT8 0x00000100 #define BIT9 0x00000200 #define BIT10 0x00000400 #define BIT11 0x00000800 #define BIT12 0x00001000 #define BIT13 0x00002000 #define BIT14 0x00004000 #define BIT15 0x00008000 #define BIT16 0x00010000 #define BIT17 0x00020000 #define BIT18 0x00040000 #define BIT19 0x00080000 #define BIT20 0x00100000 #define BIT21 0x00200000 #define BIT22 0x00400000 #define BIT23 0x00800000 #define BIT24 0x01000000 #define BIT25 0x02000000 #define BIT26 0x04000000 #define BIT27 0x08000000 #define BIT28 0x10000000 #define BIT29 0x20000000 #define BIT30 0x40000000 #define BIT31 0x80000000 #define BIT32 0x0100000000 #define BIT33 0x0200000000 #define BIT34 0x0400000000 #define BIT35 0x0800000000 #define BIT36 0x1000000000 #ifndef GENMASK #define GENMASK(h, l) \ (((~0UL) - (1UL << (l)) + 1) & (~0UL >> (BITS_PER_LONG - 1 - (h)))) #endif extern int RTW_STATUS_CODE(int error_code); #ifndef RTK_DMP_PLATFORM #define CONFIG_USE_VMALLOC #endif /* flags used for rtw_mstat_update() */ enum mstat_f { /* type: 0x00ff */ MSTAT_TYPE_VIR = 0x00, MSTAT_TYPE_PHY = 0x01, MSTAT_TYPE_SKB = 0x02, MSTAT_TYPE_USB = 0x03, MSTAT_TYPE_MAX = 0x04, /* func: 0xff00 */ MSTAT_FUNC_UNSPECIFIED = 0x00 << 8, MSTAT_FUNC_IO = 0x01 << 8, MSTAT_FUNC_TX_IO = 0x02 << 8, MSTAT_FUNC_RX_IO = 0x03 << 8, MSTAT_FUNC_TX = 0x04 << 8, MSTAT_FUNC_RX = 0x05 << 8, MSTAT_FUNC_CFG_VENDOR = 0x06 << 8, MSTAT_FUNC_MAX = 0x07 << 8, }; #define mstat_tf_idx(flags) ((flags) & 0xff) #define mstat_ff_idx(flags) (((flags) & 0xff00) >> 8) typedef enum mstat_status { MSTAT_ALLOC_SUCCESS = 0, MSTAT_ALLOC_FAIL, MSTAT_FREE } MSTAT_STATUS; #ifdef DBG_MEM_ALLOC void rtw_mstat_update(const enum mstat_f flags, const MSTAT_STATUS status, u32 sz); void rtw_mstat_dump(void *sel); bool match_mstat_sniff_rules(const enum mstat_f flags, const size_t size); void *dbg_rtw_vmalloc(u32 sz, const enum mstat_f flags, const char *func, const int line); void *dbg_rtw_zvmalloc(u32 sz, const enum mstat_f flags, const char *func, const int line); void dbg_rtw_vmfree(void *pbuf, const enum mstat_f flags, u32 sz, const char *func, const int line); void *dbg_rtw_malloc(u32 sz, const enum mstat_f flags, const char *func, const int line); void *dbg_rtw_zmalloc(u32 sz, const enum mstat_f flags, const char *func, const int line); void dbg_rtw_mfree(void *pbuf, const enum mstat_f flags, u32 sz, const char *func, const int line); struct sk_buff *dbg_rtw_skb_alloc(unsigned int size, const enum mstat_f flags, const char *func, const int line); void dbg_rtw_skb_free(struct sk_buff *skb, const enum mstat_f flags, const char *func, const int line); struct sk_buff *dbg_rtw_skb_copy(const struct sk_buff *skb, const enum mstat_f flags, const char *func, const int line); struct sk_buff *dbg_rtw_skb_clone(struct sk_buff *skb, const enum mstat_f flags, const char *func, const int line); int dbg_rtw_netif_rx(_nic_hdl ndev, struct sk_buff *skb, const enum mstat_f flags, const char *func, int line); #ifdef CONFIG_RTW_NAPI int dbg_rtw_netif_receive_skb(_nic_hdl ndev, struct sk_buff *skb, const enum mstat_f flags, const char *func, int line); #ifdef CONFIG_RTW_GRO gro_result_t dbg_rtw_napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb, const enum mstat_f flags, const char *func, int line); #endif #endif /* CONFIG_RTW_NAPI */ void dbg_rtw_skb_queue_purge(struct sk_buff_head *list, enum mstat_f flags, const char *func, int line); #ifdef CONFIG_USB_HCI void *dbg_rtw_usb_buffer_alloc(struct usb_device *dev, size_t size, dma_addr_t *dma, const enum mstat_f flags, const char *func, const int line); void dbg_rtw_usb_buffer_free(struct usb_device *dev, size_t size, void *addr, dma_addr_t dma, const enum mstat_f flags, const char *func, const int line); #endif /* CONFIG_USB_HCI */ #ifdef CONFIG_USE_VMALLOC #define rtw_vmalloc(sz) dbg_rtw_vmalloc((sz), MSTAT_TYPE_VIR, __FUNCTION__, __LINE__) #define rtw_zvmalloc(sz) dbg_rtw_zvmalloc((sz), MSTAT_TYPE_VIR, __FUNCTION__, __LINE__) #define rtw_vmfree(pbuf, sz) dbg_rtw_vmfree((pbuf), (sz), MSTAT_TYPE_VIR, __FUNCTION__, __LINE__) #define rtw_vmalloc_f(sz, mstat_f) dbg_rtw_vmalloc((sz), ((mstat_f) & 0xff00) | MSTAT_TYPE_VIR, __FUNCTION__, __LINE__) #define rtw_zvmalloc_f(sz, mstat_f) dbg_rtw_zvmalloc((sz), ((mstat_f) & 0xff00) | MSTAT_TYPE_VIR, __FUNCTION__, __LINE__) #define rtw_vmfree_f(pbuf, sz, mstat_f) dbg_rtw_vmfree((pbuf), (sz), ((mstat_f) & 0xff00) | MSTAT_TYPE_VIR, __FUNCTION__, __LINE__) #else /* CONFIG_USE_VMALLOC */ #define rtw_vmalloc(sz) dbg_rtw_malloc((sz), MSTAT_TYPE_PHY, __FUNCTION__, __LINE__) #define rtw_zvmalloc(sz) dbg_rtw_zmalloc((sz), MSTAT_TYPE_PHY, __FUNCTION__, __LINE__) #define rtw_vmfree(pbuf, sz) dbg_rtw_mfree((pbuf), (sz), MSTAT_TYPE_PHY, __FUNCTION__, __LINE__) #define rtw_vmalloc_f(sz, mstat_f) dbg_rtw_malloc((sz), ((mstat_f) & 0xff00) | MSTAT_TYPE_PHY, __FUNCTION__, __LINE__) #define rtw_zvmalloc_f(sz, mstat_f) dbg_rtw_zmalloc((sz), ((mstat_f) & 0xff00) | MSTAT_TYPE_PHY, __FUNCTION__, __LINE__) #define rtw_vmfree_f(pbuf, sz, mstat_f) dbg_rtw_mfree((pbuf), (sz), ((mstat_f) & 0xff00) | MSTAT_TYPE_PHY, __FUNCTION__, __LINE__) #endif /* CONFIG_USE_VMALLOC */ #define rtw_malloc(sz) dbg_rtw_malloc((sz), MSTAT_TYPE_PHY, __FUNCTION__, __LINE__) #define rtw_zmalloc(sz) dbg_rtw_zmalloc((sz), MSTAT_TYPE_PHY, __FUNCTION__, __LINE__) #define rtw_mfree(pbuf, sz) dbg_rtw_mfree((pbuf), (sz), MSTAT_TYPE_PHY, __FUNCTION__, __LINE__) #define rtw_malloc_f(sz, mstat_f) dbg_rtw_malloc((sz), ((mstat_f) & 0xff00) | MSTAT_TYPE_PHY, __FUNCTION__, __LINE__) #define rtw_zmalloc_f(sz, mstat_f) dbg_rtw_zmalloc((sz), ((mstat_f) & 0xff00) | MSTAT_TYPE_PHY, __FUNCTION__, __LINE__) #define rtw_mfree_f(pbuf, sz, mstat_f) dbg_rtw_mfree((pbuf), (sz), ((mstat_f) & 0xff00) | MSTAT_TYPE_PHY, __FUNCTION__, __LINE__) #define rtw_skb_alloc(size) dbg_rtw_skb_alloc((size), MSTAT_TYPE_SKB, __FUNCTION__, __LINE__) #define rtw_skb_free(skb) dbg_rtw_skb_free((skb), MSTAT_TYPE_SKB, __FUNCTION__, __LINE__) #define rtw_skb_alloc_f(size, mstat_f) dbg_rtw_skb_alloc((size), ((mstat_f) & 0xff00) | MSTAT_TYPE_SKB, __FUNCTION__, __LINE__) #define rtw_skb_free_f(skb, mstat_f) dbg_rtw_skb_free((skb), ((mstat_f) & 0xff00) | MSTAT_TYPE_SKB, __FUNCTION__, __LINE__) #define rtw_skb_copy(skb) dbg_rtw_skb_copy((skb), MSTAT_TYPE_SKB, __FUNCTION__, __LINE__) #define rtw_skb_clone(skb) dbg_rtw_skb_clone((skb), MSTAT_TYPE_SKB, __FUNCTION__, __LINE__) #define rtw_skb_copy_f(skb, mstat_f) dbg_rtw_skb_copy((skb), ((mstat_f) & 0xff00) | MSTAT_TYPE_SKB, __FUNCTION__, __LINE__) #define rtw_skb_clone_f(skb, mstat_f) dbg_rtw_skb_clone((skb), ((mstat_f) & 0xff00) | MSTAT_TYPE_SKB, __FUNCTION__, __LINE__) #define rtw_netif_rx(ndev, skb) dbg_rtw_netif_rx(ndev, skb, MSTAT_TYPE_SKB, __FUNCTION__, __LINE__) #ifdef CONFIG_RTW_NAPI #define rtw_netif_receive_skb(ndev, skb) dbg_rtw_netif_receive_skb(ndev, skb, MSTAT_TYPE_SKB, __FUNCTION__, __LINE__) #ifdef CONFIG_RTW_GRO #define rtw_napi_gro_receive(napi, skb) dbg_rtw_napi_gro_receive(napi, skb, MSTAT_TYPE_SKB, __FUNCTION__, __LINE__) #endif #endif /* CONFIG_RTW_NAPI */ #define rtw_skb_queue_purge(sk_buff_head) dbg_rtw_skb_queue_purge(sk_buff_head, MSTAT_TYPE_SKB, __FUNCTION__, __LINE__) #ifdef CONFIG_USB_HCI #define rtw_usb_buffer_alloc(dev, size, dma) dbg_rtw_usb_buffer_alloc((dev), (size), (dma), MSTAT_TYPE_USB, __FUNCTION__, __LINE__) #define rtw_usb_buffer_free(dev, size, addr, dma) dbg_rtw_usb_buffer_free((dev), (size), (addr), (dma), MSTAT_TYPE_USB, __FUNCTION__, __LINE__) #define rtw_usb_buffer_alloc_f(dev, size, dma, mstat_f) dbg_rtw_usb_buffer_alloc((dev), (size), (dma), ((mstat_f) & 0xff00) | MSTAT_TYPE_USB, __FUNCTION__, __LINE__) #define rtw_usb_buffer_free_f(dev, size, addr, dma, mstat_f) dbg_rtw_usb_buffer_free((dev), (size), (addr), (dma), ((mstat_f) & 0xff00) | MSTAT_TYPE_USB, __FUNCTION__, __LINE__) #endif /* CONFIG_USB_HCI */ #else /* DBG_MEM_ALLOC */ #define rtw_mstat_update(flag, status, sz) do {} while (0) #define rtw_mstat_dump(sel) do {} while (0) #define match_mstat_sniff_rules(flags, size) _FALSE void *_rtw_vmalloc(u32 sz); void *_rtw_zvmalloc(u32 sz); void _rtw_vmfree(void *pbuf, u32 sz); void *_rtw_zmalloc(u32 sz); void *_rtw_malloc(u32 sz); void _rtw_mfree(void *pbuf, u32 sz); struct sk_buff *_rtw_skb_alloc(u32 sz); void _rtw_skb_free(struct sk_buff *skb); struct sk_buff *_rtw_skb_copy(const struct sk_buff *skb); struct sk_buff *_rtw_skb_clone(struct sk_buff *skb); int _rtw_netif_rx(_nic_hdl ndev, struct sk_buff *skb); #ifdef CONFIG_RTW_NAPI int _rtw_netif_receive_skb(_nic_hdl ndev, struct sk_buff *skb); #ifdef CONFIG_RTW_GRO gro_result_t _rtw_napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); #endif #endif /* CONFIG_RTW_NAPI */ void _rtw_skb_queue_purge(struct sk_buff_head *list); #ifdef CONFIG_USB_HCI void *_rtw_usb_buffer_alloc(struct usb_device *dev, size_t size, dma_addr_t *dma); void _rtw_usb_buffer_free(struct usb_device *dev, size_t size, void *addr, dma_addr_t dma); #endif /* CONFIG_USB_HCI */ #ifdef CONFIG_USE_VMALLOC #define rtw_vmalloc(sz) _rtw_vmalloc((sz)) #define rtw_zvmalloc(sz) _rtw_zvmalloc((sz)) #define rtw_vmfree(pbuf, sz) _rtw_vmfree((pbuf), (sz)) #define rtw_vmalloc_f(sz, mstat_f) _rtw_vmalloc((sz)) #define rtw_zvmalloc_f(sz, mstat_f) _rtw_zvmalloc((sz)) #define rtw_vmfree_f(pbuf, sz, mstat_f) _rtw_vmfree((pbuf), (sz)) #else /* CONFIG_USE_VMALLOC */ #define rtw_vmalloc(sz) _rtw_malloc((sz)) #define rtw_zvmalloc(sz) _rtw_zmalloc((sz)) #define rtw_vmfree(pbuf, sz) _rtw_mfree((pbuf), (sz)) #define rtw_vmalloc_f(sz, mstat_f) _rtw_malloc((sz)) #define rtw_zvmalloc_f(sz, mstat_f) _rtw_zmalloc((sz)) #define rtw_vmfree_f(pbuf, sz, mstat_f) _rtw_mfree((pbuf), (sz)) #endif /* CONFIG_USE_VMALLOC */ #define rtw_malloc(sz) _rtw_malloc((sz)) #define rtw_zmalloc(sz) _rtw_zmalloc((sz)) #define rtw_mfree(pbuf, sz) _rtw_mfree((pbuf), (sz)) #define rtw_malloc_f(sz, mstat_f) _rtw_malloc((sz)) #define rtw_zmalloc_f(sz, mstat_f) _rtw_zmalloc((sz)) #define rtw_mfree_f(pbuf, sz, mstat_f) _rtw_mfree((pbuf), (sz)) #define rtw_skb_alloc(size) _rtw_skb_alloc((size)) #define rtw_skb_free(skb) _rtw_skb_free((skb)) #define rtw_skb_alloc_f(size, mstat_f) _rtw_skb_alloc((size)) #define rtw_skb_free_f(skb, mstat_f) _rtw_skb_free((skb)) #define rtw_skb_copy(skb) _rtw_skb_copy((skb)) #define rtw_skb_clone(skb) _rtw_skb_clone((skb)) #define rtw_skb_copy_f(skb, mstat_f) _rtw_skb_copy((skb)) #define rtw_skb_clone_f(skb, mstat_f) _rtw_skb_clone((skb)) #define rtw_netif_rx(ndev, skb) _rtw_netif_rx(ndev, skb) #ifdef CONFIG_RTW_NAPI #define rtw_netif_receive_skb(ndev, skb) _rtw_netif_receive_skb(ndev, skb) #ifdef CONFIG_RTW_GRO #define rtw_napi_gro_receive(napi, skb) _rtw_napi_gro_receive(napi, skb) #endif #endif /* CONFIG_RTW_NAPI */ #define rtw_skb_queue_purge(sk_buff_head) _rtw_skb_queue_purge(sk_buff_head) #ifdef CONFIG_USB_HCI #define rtw_usb_buffer_alloc(dev, size, dma) _rtw_usb_buffer_alloc((dev), (size), (dma)) #define rtw_usb_buffer_free(dev, size, addr, dma) _rtw_usb_buffer_free((dev), (size), (addr), (dma)) #define rtw_usb_buffer_alloc_f(dev, size, dma, mstat_f) _rtw_usb_buffer_alloc((dev), (size), (dma)) #define rtw_usb_buffer_free_f(dev, size, addr, dma, mstat_f) _rtw_usb_buffer_free((dev), (size), (addr), (dma)) #endif /* CONFIG_USB_HCI */ #endif /* DBG_MEM_ALLOC */ extern void *rtw_malloc2d(int h, int w, size_t size); extern void rtw_mfree2d(void *pbuf, int h, int w, int size); void rtw_os_pkt_free(_pkt *pkt); _pkt *rtw_os_pkt_copy(_pkt *pkt); void *rtw_os_pkt_data(_pkt *pkt); u32 rtw_os_pkt_len(_pkt *pkt); extern void _rtw_memcpy(void *dec, const void *sour, u32 sz); extern void _rtw_memmove(void *dst, const void *src, u32 sz); extern int _rtw_memcmp(const void *dst, const void *src, u32 sz); extern int _rtw_memcmp2(const void *dst, const void *src, u32 sz); extern void _rtw_memset(void *pbuf, int c, u32 sz); extern void _rtw_init_listhead(_list *list); extern u32 rtw_is_list_empty(_list *phead); extern void rtw_list_insert_head(_list *plist, _list *phead); extern void rtw_list_insert_tail(_list *plist, _list *phead); void rtw_list_splice(_list *list, _list *head); void rtw_list_splice_init(_list *list, _list *head); void rtw_list_splice_tail(_list *list, _list *head); #ifndef PLATFORM_FREEBSD extern void rtw_list_delete(_list *plist); #endif /* PLATFORM_FREEBSD */ void rtw_hlist_head_init(rtw_hlist_head *h); void rtw_hlist_add_head(rtw_hlist_node *n, rtw_hlist_head *h); void rtw_hlist_del(rtw_hlist_node *n); void rtw_hlist_add_head_rcu(rtw_hlist_node *n, rtw_hlist_head *h); void rtw_hlist_del_rcu(rtw_hlist_node *n); extern void _rtw_init_sema(_sema *sema, int init_val); extern void _rtw_free_sema(_sema *sema); extern void _rtw_up_sema(_sema *sema); extern u32 _rtw_down_sema(_sema *sema); extern void _rtw_mutex_init(_mutex *pmutex); extern void _rtw_mutex_free(_mutex *pmutex); #ifndef PLATFORM_FREEBSD extern void _rtw_spinlock_init(_lock *plock); #endif /* PLATFORM_FREEBSD */ extern void _rtw_spinlock_free(_lock *plock); extern void _rtw_spinlock(_lock *plock); extern void _rtw_spinunlock(_lock *plock); extern void _rtw_spinlock_ex(_lock *plock); extern void _rtw_spinunlock_ex(_lock *plock); extern void _rtw_init_queue(_queue *pqueue); extern void _rtw_deinit_queue(_queue *pqueue); extern u32 _rtw_queue_empty(_queue *pqueue); extern u32 rtw_end_of_queue_search(_list *queue, _list *pelement); extern systime _rtw_get_current_time(void); extern u32 _rtw_systime_to_ms(systime stime); extern systime _rtw_ms_to_systime(u32 ms); extern systime _rtw_us_to_systime(u32 us); extern s32 _rtw_get_passing_time_ms(systime start); extern s32 _rtw_get_remaining_time_ms(systime end); extern s32 _rtw_get_time_interval_ms(systime start, systime end); extern bool _rtw_time_after(systime a, systime b); #ifdef DBG_SYSTIME #define rtw_get_current_time() ({systime __stime = _rtw_get_current_time(); __stime;}) #define rtw_systime_to_ms(stime) ({u32 __ms = _rtw_systime_to_ms(stime); typecheck(systime, stime); __ms;}) #define rtw_ms_to_systime(ms) ({systime __stime = _rtw_ms_to_systime(ms); __stime;}) #define rtw_us_to_systime(us) ({systime __stime = _rtw_us_to_systime(us); __stime;}) #define rtw_get_passing_time_ms(start) ({u32 __ms = _rtw_get_passing_time_ms(start); typecheck(systime, start); __ms;}) #define rtw_get_remaining_time_ms(end) ({u32 __ms = _rtw_get_remaining_time_ms(end); typecheck(systime, end); __ms;}) #define rtw_get_time_interval_ms(start, end) ({u32 __ms = _rtw_get_time_interval_ms(start, end); typecheck(systime, start); typecheck(systime, end); __ms;}) #define rtw_time_after(a,b) ({bool __r = _rtw_time_after(a,b); typecheck(systime, a); typecheck(systime, b); __r;}) #define rtw_time_before(a,b) ({bool __r = _rtw_time_after(b, a); typecheck(systime, a); typecheck(systime, b); __r;}) #else #define rtw_get_current_time() _rtw_get_current_time() #define rtw_systime_to_ms(stime) _rtw_systime_to_ms(stime) #define rtw_ms_to_systime(ms) _rtw_ms_to_systime(ms) #define rtw_us_to_systime(us) _rtw_us_to_systime(us) #define rtw_get_passing_time_ms(start) _rtw_get_passing_time_ms(start) #define rtw_get_remaining_time_ms(end) _rtw_get_remaining_time_ms(end) #define rtw_get_time_interval_ms(start, end) _rtw_get_time_interval_ms(start, end) #define rtw_time_after(a,b) _rtw_time_after(a,b) #define rtw_time_before(a,b) _rtw_time_after(b,a) #endif extern void rtw_sleep_schedulable(int ms); extern void rtw_msleep_os(int ms); extern void rtw_usleep_os(int us); extern u32 rtw_atoi(u8 *s); #ifdef DBG_DELAY_OS #define rtw_mdelay_os(ms) _rtw_mdelay_os((ms), __FUNCTION__, __LINE__) #define rtw_udelay_os(ms) _rtw_udelay_os((ms), __FUNCTION__, __LINE__) extern void _rtw_mdelay_os(int ms, const char *func, const int line); extern void _rtw_udelay_os(int us, const char *func, const int line); #else extern void rtw_mdelay_os(int ms); extern void rtw_udelay_os(int us); #endif extern void rtw_yield_os(void); extern void rtw_init_timer(_timer *ptimer, void *padapter, void *pfunc, void *ctx); __inline static unsigned char _cancel_timer_ex(_timer *ptimer) { u8 bcancelled; _cancel_timer(ptimer, &bcancelled); return bcancelled; } static __inline void thread_enter(char *name) { #ifdef PLATFORM_LINUX allow_signal(SIGTERM); #endif #ifdef PLATFORM_FREEBSD printf("%s", "RTKTHREAD_enter"); #endif } void thread_exit(_completion *comp); void _rtw_init_completion(_completion *comp); void _rtw_wait_for_comp_timeout(_completion *comp); void _rtw_wait_for_comp(_completion *comp); static inline bool rtw_thread_stop(_thread_hdl_ th) { #ifdef PLATFORM_LINUX return kthread_stop(th); #endif } static inline void rtw_thread_wait_stop(void) { #ifdef PLATFORM_LINUX #if 0 while (!kthread_should_stop()) rtw_msleep_os(10); #else set_current_state(TASK_INTERRUPTIBLE); while (!kthread_should_stop()) { schedule(); set_current_state(TASK_INTERRUPTIBLE); } __set_current_state(TASK_RUNNING); #endif #endif } __inline static void flush_signals_thread(void) { #ifdef PLATFORM_LINUX if (signal_pending(current)) flush_signals(current); #endif } __inline static _OS_STATUS res_to_status(sint res) { #if defined(PLATFORM_LINUX) || defined (PLATFORM_MPIXEL) || defined (PLATFORM_FREEBSD) return res; #endif #ifdef PLATFORM_WINDOWS if (res == _SUCCESS) return NDIS_STATUS_SUCCESS; else return NDIS_STATUS_FAILURE; #endif } __inline static void rtw_dump_stack(void) { #ifdef PLATFORM_LINUX dump_stack(); #endif } #ifdef PLATFORM_LINUX #define rtw_warn_on(condition) WARN_ON(condition) #else #define rtw_warn_on(condition) do {} while (0) #endif __inline static int rtw_bug_check(void *parg1, void *parg2, void *parg3, void *parg4) { int ret = _TRUE; #ifdef PLATFORM_WINDOWS if (((uint)parg1) <= 0x7fffffff || ((uint)parg2) <= 0x7fffffff || ((uint)parg3) <= 0x7fffffff || ((uint)parg4) <= 0x7fffffff) { ret = _FALSE; KeBugCheckEx(0x87110000, (ULONG_PTR)parg1, (ULONG_PTR)parg2, (ULONG_PTR)parg3, (ULONG_PTR)parg4); } #endif return ret; } #ifdef PLATFORM_LINUX #define RTW_DIV_ROUND_UP(n, d) DIV_ROUND_UP(n, d) #else /* !PLATFORM_LINUX */ #define RTW_DIV_ROUND_UP(n, d) (((n) + (d - 1)) / d) #endif /* !PLATFORM_LINUX */ #define _RND(sz, r) ((((sz)+((r)-1))/(r))*(r)) #define RND4(x) (((x >> 2) + (((x & 3) == 0) ? 0 : 1)) << 2) __inline static u32 _RND4(u32 sz) { u32 val; val = ((sz >> 2) + ((sz & 3) ? 1 : 0)) << 2; return val; } __inline static u32 _RND8(u32 sz) { u32 val; val = ((sz >> 3) + ((sz & 7) ? 1 : 0)) << 3; return val; } __inline static u32 _RND128(u32 sz) { u32 val; val = ((sz >> 7) + ((sz & 127) ? 1 : 0)) << 7; return val; } __inline static u32 _RND256(u32 sz) { u32 val; val = ((sz >> 8) + ((sz & 255) ? 1 : 0)) << 8; return val; } __inline static u32 _RND512(u32 sz) { u32 val; val = ((sz >> 9) + ((sz & 511) ? 1 : 0)) << 9; return val; } __inline static u32 bitshift(u32 bitmask) { u32 i; for (i = 0; i <= 31; i++) if (((bitmask >> i) & 0x1) == 1) break; return i; } static inline int largest_bit(u32 bitmask) { int i; for (i = 31; i >= 0; i--) if (bitmask & BIT(i)) break; return i; } static inline int largest_bit_64(u64 bitmask) { int i; for (i = 63; i >= 0; i--) if (bitmask & BIT_ULL(i)) break; return i; } #define rtw_abs(a) (a < 0 ? -a : a) #define rtw_min(a, b) ((a > b) ? b : a) #define rtw_max(a, b) ((a > b) ? a : b) #define rtw_is_range_a_in_b(hi_a, lo_a, hi_b, lo_b) (((hi_a) <= (hi_b)) && ((lo_a) >= (lo_b))) #define rtw_is_range_overlap(hi_a, lo_a, hi_b, lo_b) (((hi_a) > (lo_b)) && ((lo_a) < (hi_b))) #ifndef MAC_FMT #define MAC_FMT "%02x:%02x:%02x:%02x:%02x:%02x" #endif #ifndef MAC_ARG #define MAC_ARG(x) ((u8 *)(x))[0], ((u8 *)(x))[1], ((u8 *)(x))[2], ((u8 *)(x))[3], ((u8 *)(x))[4], ((u8 *)(x))[5] #endif bool rtw_macaddr_is_larger(const u8 *a, const u8 *b); extern void rtw_suspend_lock_init(void); extern void rtw_suspend_lock_uninit(void); extern void rtw_lock_suspend(void); extern void rtw_unlock_suspend(void); extern void rtw_lock_suspend_timeout(u32 timeout_ms); extern void rtw_lock_traffic_suspend_timeout(u32 timeout_ms); extern void rtw_resume_lock_suspend(void); extern void rtw_resume_unlock_suspend(void); #ifdef CONFIG_AP_WOWLAN extern void rtw_softap_lock_suspend(void); extern void rtw_softap_unlock_suspend(void); #endif extern void rtw_set_bit(int nr, unsigned long *addr); extern void rtw_clear_bit(int nr, unsigned long *addr); extern int rtw_test_and_clear_bit(int nr, unsigned long *addr); extern void ATOMIC_SET(ATOMIC_T *v, int i); extern int ATOMIC_READ(ATOMIC_T *v); extern void ATOMIC_ADD(ATOMIC_T *v, int i); extern void ATOMIC_SUB(ATOMIC_T *v, int i); extern void ATOMIC_INC(ATOMIC_T *v); extern void ATOMIC_DEC(ATOMIC_T *v); extern int ATOMIC_ADD_RETURN(ATOMIC_T *v, int i); extern int ATOMIC_SUB_RETURN(ATOMIC_T *v, int i); extern int ATOMIC_INC_RETURN(ATOMIC_T *v); extern int ATOMIC_DEC_RETURN(ATOMIC_T *v); extern bool ATOMIC_INC_UNLESS(ATOMIC_T *v, int u); /* File operation APIs, just for linux now */ extern int rtw_is_dir_readable(const char *path); extern int rtw_is_file_readable(const char *path); extern int rtw_is_file_readable_with_size(const char *path, u32 *sz); extern int rtw_readable_file_sz_chk(const char *path, u32 sz); extern int rtw_retrieve_from_file(const char *path, u8 *buf, u32 sz); extern int rtw_store_to_file(const char *path, u8 *buf, u32 sz); #ifndef PLATFORM_FREEBSD extern void rtw_free_netdev(struct net_device *netdev); #endif /* PLATFORM_FREEBSD */ extern u64 rtw_modular64(u64 x, u64 y); extern u64 rtw_division64(u64 x, u64 y); extern u32 rtw_random32(void); /* Macros for handling unaligned memory accesses */ #define RTW_GET_BE16(a) ((u16) (((a)[0] << 8) | (a)[1])) #define RTW_PUT_BE16(a, val) \ do { \ (a)[0] = ((u16) (val)) >> 8; \ (a)[1] = ((u16) (val)) & 0xff; \ } while (0) #define RTW_GET_LE16(a) ((u16) (((a)[1] << 8) | (a)[0])) #define RTW_PUT_LE16(a, val) \ do { \ (a)[1] = ((u16) (val)) >> 8; \ (a)[0] = ((u16) (val)) & 0xff; \ } while (0) #define RTW_GET_BE24(a) ((((u32) (a)[0]) << 16) | (((u32) (a)[1]) << 8) | \ ((u32) (a)[2])) #define RTW_PUT_BE24(a, val) \ do { \ (a)[0] = (u8) ((((u32) (val)) >> 16) & 0xff); \ (a)[1] = (u8) ((((u32) (val)) >> 8) & 0xff); \ (a)[2] = (u8) (((u32) (val)) & 0xff); \ } while (0) #define RTW_GET_BE32(a) ((((u32) (a)[0]) << 24) | (((u32) (a)[1]) << 16) | \ (((u32) (a)[2]) << 8) | ((u32) (a)[3])) #define RTW_PUT_BE32(a, val) \ do { \ (a)[0] = (u8) ((((u32) (val)) >> 24) & 0xff); \ (a)[1] = (u8) ((((u32) (val)) >> 16) & 0xff); \ (a)[2] = (u8) ((((u32) (val)) >> 8) & 0xff); \ (a)[3] = (u8) (((u32) (val)) & 0xff); \ } while (0) #define RTW_GET_LE32(a) ((((u32) (a)[3]) << 24) | (((u32) (a)[2]) << 16) | \ (((u32) (a)[1]) << 8) | ((u32) (a)[0])) #define RTW_PUT_LE32(a, val) \ do { \ (a)[3] = (u8) ((((u32) (val)) >> 24) & 0xff); \ (a)[2] = (u8) ((((u32) (val)) >> 16) & 0xff); \ (a)[1] = (u8) ((((u32) (val)) >> 8) & 0xff); \ (a)[0] = (u8) (((u32) (val)) & 0xff); \ } while (0) #define RTW_GET_BE64(a) ((((u64) (a)[0]) << 56) | (((u64) (a)[1]) << 48) | \ (((u64) (a)[2]) << 40) | (((u64) (a)[3]) << 32) | \ (((u64) (a)[4]) << 24) | (((u64) (a)[5]) << 16) | \ (((u64) (a)[6]) << 8) | ((u64) (a)[7])) #define RTW_PUT_BE64(a, val) \ do { \ (a)[0] = (u8) (((u64) (val)) >> 56); \ (a)[1] = (u8) (((u64) (val)) >> 48); \ (a)[2] = (u8) (((u64) (val)) >> 40); \ (a)[3] = (u8) (((u64) (val)) >> 32); \ (a)[4] = (u8) (((u64) (val)) >> 24); \ (a)[5] = (u8) (((u64) (val)) >> 16); \ (a)[6] = (u8) (((u64) (val)) >> 8); \ (a)[7] = (u8) (((u64) (val)) & 0xff); \ } while (0) #define RTW_GET_LE64(a) ((((u64) (a)[7]) << 56) | (((u64) (a)[6]) << 48) | \ (((u64) (a)[5]) << 40) | (((u64) (a)[4]) << 32) | \ (((u64) (a)[3]) << 24) | (((u64) (a)[2]) << 16) | \ (((u64) (a)[1]) << 8) | ((u64) (a)[0])) #define RTW_PUT_LE64(a, val) \ do { \ (a)[7] = (u8) ((((u64) (val)) >> 56) & 0xff); \ (a)[6] = (u8) ((((u64) (val)) >> 48) & 0xff); \ (a)[5] = (u8) ((((u64) (val)) >> 40) & 0xff); \ (a)[4] = (u8) ((((u64) (val)) >> 32) & 0xff); \ (a)[3] = (u8) ((((u64) (val)) >> 24) & 0xff); \ (a)[2] = (u8) ((((u64) (val)) >> 16) & 0xff); \ (a)[1] = (u8) ((((u64) (val)) >> 8) & 0xff); \ (a)[0] = (u8) (((u64) (val)) & 0xff); \ } while (0) void rtw_buf_free(u8 **buf, u32 *buf_len); void rtw_buf_update(u8 **buf, u32 *buf_len, u8 *src, u32 src_len); struct rtw_cbuf { u32 write; u32 read; u32 size; void *bufs[0]; }; bool rtw_cbuf_full(struct rtw_cbuf *cbuf); bool rtw_cbuf_empty(struct rtw_cbuf *cbuf); bool rtw_cbuf_push(struct rtw_cbuf *cbuf, void *buf); void *rtw_cbuf_pop(struct rtw_cbuf *cbuf); struct rtw_cbuf *rtw_cbuf_alloc(u32 size); void rtw_cbuf_free(struct rtw_cbuf *cbuf); struct map_seg_t { u16 sa; u16 len; u8 *c; }; struct map_t { u16 len; u16 seg_num; u8 init_value; struct map_seg_t *segs; }; #define MAPSEG_ARRAY_ENT(_sa, _len, _c, arg...) \ { .sa = _sa, .len = _len, .c = (u8[_len]){ _c, ##arg}, } #define MAPSEG_PTR_ENT(_sa, _len, _p) \ { .sa = _sa, .len = _len, .c = _p, } #define MAP_ENT(_len, _seg_num, _init_v, _seg, arg...) \ { .len = _len, .seg_num = _seg_num, .init_value = _init_v, .segs = (struct map_seg_t[_seg_num]){ _seg, ##arg}, } int map_readN(const struct map_t *map, u16 offset, u16 len, u8 *buf); u8 map_read8(const struct map_t *map, u16 offset); struct blacklist_ent { _list list; u8 addr[ETH_ALEN]; systime exp_time; }; int rtw_blacklist_add(_queue *blist, const u8 *addr, u32 timeout_ms); int rtw_blacklist_del(_queue *blist, const u8 *addr); int rtw_blacklist_search(_queue *blist, const u8 *addr); void rtw_blacklist_flush(_queue *blist); void dump_blacklist(void *sel, _queue *blist, const char *title); /* String handler */ BOOLEAN is_null(char c); BOOLEAN is_all_null(char *c, int len); BOOLEAN is_eol(char c); BOOLEAN is_space(char c); BOOLEAN IsHexDigit(char chTmp); BOOLEAN is_alpha(char chTmp); char alpha_to_upper(char c); int hex2num_i(char c); int hex2byte_i(const char *hex); int hexstr2bin(const char *hex, u8 *buf, size_t len); /* * Write formatted output to sized buffer */ #ifdef PLATFORM_LINUX #define rtw_sprintf(buf, size, format, arg...) snprintf(buf, size, format, ##arg) #else /* !PLATFORM_LINUX */ #error "NOT DEFINE \"rtw_sprintf\"!!" #endif /* !PLATFORM_LINUX */ #endif