/*! * @file Adafruit_CircuitPlayground.cpp * * @mainpage Adafruit CircuitPlayground Library * * @section intro_sec Introduction * * This is the documentation for Adafruit's CircuitPlayground driver for the * Arduino platform. It is designed specifically to work with the * Adafruit CircuitPlayground boards: * - https://www.adafruit.com/products/3000 * - https://www.adafruit.com/products/3333 * * * Adafruit invests time and resources providing this open source code, * please support Adafruit and open-source hardware by purchasing * products from Adafruit! * * * @section author Author * * Written by Ladyada and others for Adafruit Industries. * * @section license License * * BSD license, all text here must be included in any redistribution. * */ #include /**************************************************************************/ /*! @brief Set up the CircuitPlayground hardware @param brightness Optional brightness to set the neopixels to @returns True if device is set up, false on any failure */ /**************************************************************************/ bool Adafruit_CircuitPlayground::begin(uint8_t brightness) { pinMode(CPLAY_REDLED, OUTPUT); pinMode(CPLAY_BUZZER, OUTPUT); #if defined(__AVR__) pinMode(CPLAY_CAPSENSE_SHARED, OUTPUT); pinMode(CPLAY_LEFTBUTTON, INPUT); pinMode(CPLAY_RIGHTBUTTON, INPUT); pinMode(CPLAY_SLIDESWITCHPIN, INPUT); #elif defined(ARDUINO_NRF52840_CIRCUITPLAY) // bluefruit pinMode(CPLAY_LEFTBUTTON, INPUT_PULLDOWN); pinMode(CPLAY_RIGHTBUTTON, INPUT_PULLDOWN); pinMode(CPLAY_SLIDESWITCHPIN, INPUT_PULLUP); pinMode(CPLAY_SPEAKER_SHUTDOWN, OUTPUT); digitalWrite(CPLAY_SPEAKER_SHUTDOWN, HIGH); #elif defined(__SAMD21G18A__) // Circuit Playground Express pinMode(CPLAY_LEFTBUTTON, INPUT_PULLDOWN); pinMode(CPLAY_RIGHTBUTTON, INPUT_PULLDOWN); pinMode(CPLAY_SLIDESWITCHPIN, INPUT_PULLUP); irReceiver=IRrecvPCI(CPLAY_IR_RECEIVER); irDecoder=IRdecode(); // since we aren't calling speaker.begin() anymore, do this here pinMode(CPLAY_SPEAKER_SHUTDOWN, OUTPUT); digitalWrite(CPLAY_SPEAKER_SHUTDOWN, HIGH); #endif strip = Adafruit_CPlay_NeoPixel(); strip.updateType(NEO_GRB + NEO_KHZ800); strip.updateLength(10); strip.setPin(CPLAY_NEOPIXELPIN); #ifdef __AVR__ // Circuit Playground 'classic' lis = Adafruit_CPlay_LIS3DH(CPLAY_LIS3DH_CS, &SPI); // SPI #elif defined(ARDUINO_NRF52840_CIRCUITPLAY) lis = Adafruit_CPlay_LIS3DH(&Wire1); // i2c on wire1 #else // samd21 lis = Adafruit_CPlay_LIS3DH(&Wire1); // i2c on wire1 #endif mic = Adafruit_CPlay_Mic(); strip.begin(); strip.show(); // Initialize all pixels to 'off' strip.setBrightness(brightness); #if defined(__AVR__) || defined(ARDUINO_NRF52840_CIRCUITPLAY) // bluefruit cap[0] = CPlay_CapacitiveSensor(CPLAY_CAPSENSE_SHARED, 0); cap[1] = CPlay_CapacitiveSensor(CPLAY_CAPSENSE_SHARED, 1); cap[2] = CPlay_CapacitiveSensor(CPLAY_CAPSENSE_SHARED, 2); cap[3] = CPlay_CapacitiveSensor(CPLAY_CAPSENSE_SHARED, 3); cap[4] = CPlay_CapacitiveSensor(CPLAY_CAPSENSE_SHARED, 6); cap[5] = CPlay_CapacitiveSensor(CPLAY_CAPSENSE_SHARED, 9); cap[6] = CPlay_CapacitiveSensor(CPLAY_CAPSENSE_SHARED, 10); cap[7] = CPlay_CapacitiveSensor(CPLAY_CAPSENSE_SHARED, 12); #elif defined(__SAMD21G18A__) // Circuit Playground Express for(int i=0; i<7; i++) { cap[i] = Adafruit_CPlay_FreeTouch(A1+i, OVERSAMPLE_4, RESISTOR_50K, FREQ_MODE_NONE); if (! cap[i].begin()) return false; } #endif return lis.begin(CPLAY_LIS3DH_ADDRESS); } /**************************************************************************/ /*! @brief read capacitive touch sensor @param p the pin to read. Must be a captouch enabled pin. @param samples Optional number of samples to take. Defaults to 10. @returns measured captouch value */ /**************************************************************************/ uint16_t Adafruit_CircuitPlayground::readCap(uint8_t p, uint8_t samples) { #if defined(__AVR__) || defined(ARDUINO_NRF52840_CIRCUITPLAY) // Circuit Playground Classic or bluefruit switch (p) { case 0: return cap[0].capacitiveSensor(samples); case 1: return cap[1].capacitiveSensor(samples); case 2: return cap[2].capacitiveSensor(samples); case 3: return cap[3].capacitiveSensor(samples); case 6: return cap[4].capacitiveSensor(samples); case 9: return cap[5].capacitiveSensor(samples); case 10: return cap[6].capacitiveSensor(samples); case 12: return cap[7].capacitiveSensor(samples); default: return 0; } #elif defined(__SAMD21G18A__) // Circuit Playground Express // analog pins r ez! if ((p >= A1) && (p <= A7)) { return cap[p - A1].measure(); } // oof digital pins switch (p) { case 0: return cap[A6 - A1].measure(); case 1: return cap[A7 - A1].measure(); case 2: return cap[A5 - A1].measure(); case 3: return cap[A4 - A1].measure(); case 6: return cap[A1 - A1].measure(); case 9: return cap[A2 - A1].measure(); case 10: return cap[A3 - A1].measure(); default: return 0; } #endif } /**************************************************************************/ /*! @brief turn on or off the red LED on pin #13 @param v pass true to turn LED on, false to turn LED off */ /**************************************************************************/ void Adafruit_CircuitPlayground::redLED(bool v) { digitalWrite(CPLAY_REDLED, v); } /**************************************************************************/ /*! @brief read the slide switch @returns true if slide switch in set, false if not */ /**************************************************************************/ bool Adafruit_CircuitPlayground::slideSwitch(void) { return digitalRead(CPLAY_SLIDESWITCHPIN); } /**************************************************************************/ /*! @brief read the left button @returns true if button is pressed, false if not */ /**************************************************************************/ bool Adafruit_CircuitPlayground::leftButton(void) { return digitalRead(CPLAY_LEFTBUTTON); } /**************************************************************************/ /*! @brief read the right button @returns true if button is pressed, false if not */ /**************************************************************************/ bool Adafruit_CircuitPlayground::rightButton(void) { return digitalRead(CPLAY_RIGHTBUTTON); } /**************************************************************************/ /*! @brief play a tone on the onboard buzzer @param freq the frequency to play @param time the duration of the tone in milliseconds @param wait Optional flag to wait for time milliseconds after playing the tone. Defaults to true. @note The driver circuitry is an on/off transistor driver, so you will only be able to play square waves. It is also not the same loudness over all frequencies but is designed to be the loudest at around 4 KHz */ /**************************************************************************/ void Adafruit_CircuitPlayground::playTone( uint16_t freq, uint16_t time, bool wait) { #ifdef __AVR__ #define F_PLL 48000000 if(!freq) return; uint32_t ocr; uint16_t prescale = 1; uint8_t scalebits = 0; uint8_t hi1, lo1, hi2, lo2; // Determine best prescaler setting for 10-bit timer do { scalebits++; ocr = F_PLL / freq / prescale - 1; prescale *= 2; if(prescale >= 16384) { ocr = 1023; scalebits = 0b1111; } } while(ocr > 1023); // Set up Timer4 for fast PWM on !OC4A PLLFRQ = (PLLFRQ & 0xCF) | 0x30; // Route PLL to async clk TCCR4A = _BV(COM4A0) | _BV(PWM4A); // Clear on match, PWMA on TCCR4B = _BV(PWM4X) | scalebits; // PWM invert TCCR4D = 0; // Fast PWM mode TCCR4E = 0; // Not enhanced mode DT4 = 0; // No dead time hi1 = ocr >> 8; lo1 = ocr & 0xFF; hi2 = ocr >> 9; lo2 = (ocr >> 1) & 0xFF; noInterrupts(); // TC4H accesses MUST be atomic TC4H = hi1; OCR4C = lo1; // TOP TC4H = hi2; OCR4A = lo2; // 50% duty interrupts(); pinMode(5, OUTPUT); // Enable output delay(time); pinMode(5, INPUT); // Disable output TCCR4A = 0; // PWMA off #else tone(CPLAY_BUZZER, freq, time); delay(time); // time argument to tone() isn't working, so... #endif if(wait) delay(time); } /**************************************************************************/ /*! @brief read the onboard lightsensor @returns value between 0 and 1023 read from the light sensor @note 1000 Lux will roughly read as 2 Volts (or about 680 as a raw analog reading). A reading of about 300 is common for most indoor light levels. Note that outdoor daylight is 10,000 Lux or even higher, so this sensor is best suited for indoor light levels! */ /**************************************************************************/ uint16_t Adafruit_CircuitPlayground::lightSensor(void) { return analogRead(CPLAY_LIGHTSENSOR); } /**************************************************************************/ /*! @brief read the onboard sound sensor. A reading of ~0 is silent, and loud audio will result in a reading between -500 and 500 or so. @returns value of the sound sensor */ /**************************************************************************/ int16_t Adafruit_CircuitPlayground::soundSensor(void) { int16_t x; mic.capture(&x, 1); return x; } /**************************************************************************/ /*! @brief read the X parameter of the onboard accelerometer. Value returned is defined by setAccelRange(). @returns X value of the accelerometer */ /**************************************************************************/ float Adafruit_CircuitPlayground::motionX(void) { sensors_event_t event; CircuitPlayground.lis.getEvent(&event); return event.acceleration.x; } /**************************************************************************/ /*! @brief read the Y parameter of the onboard accelerometer. Value returned is defined by setAccelRange(). @returns Y value of the accelerometer */ /**************************************************************************/ float Adafruit_CircuitPlayground::motionY(void) { sensors_event_t event; CircuitPlayground.lis.getEvent(&event); return event.acceleration.y; } /**************************************************************************/ /*! @brief read the Z parameter of the onboard accelerometer. Value returned is defined by setAccelRange(). @returns the Z value of the onboard accelerometer */ /**************************************************************************/ float Adafruit_CircuitPlayground::motionZ(void) { sensors_event_t event; CircuitPlayground.lis.getEvent(&event); return event.acceleration.z; } /**************************************************************************/ /*! @brief read the onboard thermistor. @returns temperature reading in Centigrade. */ /**************************************************************************/ float Adafruit_CircuitPlayground::temperature(void) { // Thermistor test double reading; reading = analogRead(CPLAY_THERMISTORPIN); //Serial.print("Thermistor reading: "); Serial.println(reading); // convert the value to resistance reading = ((1023.0 * SERIESRESISTOR) / reading); reading -= SERIESRESISTOR; //Serial.print("Thermistor resistance: "); Serial.println(reading); double steinhart; steinhart = reading / THERMISTORNOMINAL; // (R/Ro) steinhart = log(steinhart); // ln(R/Ro) steinhart /= BCOEFFICIENT; // 1/B * ln(R/Ro) steinhart += 1.0 / (TEMPERATURENOMINAL + 273.15); // + (1/To) steinhart = 1.0 / steinhart; // Invert steinhart -= 273.15; // convert to C return steinhart; } /**************************************************************************/ /*! @brief read the onboard thermistor. @returns temperature reading in Farenheight. */ /**************************************************************************/ float Adafruit_CircuitPlayground::temperatureF(void) { float tempF = CircuitPlayground.temperature() * 1.8 + 32; return tempF; } /**************************************************************************/ /*! @brief get a color value from the color wheel. @param WheelPos a value 0 to 255 @returns a color value. The colours are a transition r - g - b - back to r. */ /**************************************************************************/ uint32_t Adafruit_CircuitPlayground::colorWheel(uint8_t WheelPos) { WheelPos = 255 - WheelPos; if (WheelPos < 85) { return strip.Color(255 - WheelPos * 3, 0, WheelPos * 3); } if (WheelPos < 170) { WheelPos -= 85; return strip.Color(0, WheelPos * 3, 255 - WheelPos * 3); } WheelPos -= 170; return strip.Color(WheelPos * 3, 255 - WheelPos * 3, 0); } /**************************************************************************/ /*! @brief detect a color value from the light sensor @param red the pointer to where the red component should be stored. @param green the pointer to where the green component should be stored. @param blue the pointer to where the blue component should be stored. */ /**************************************************************************/ void Adafruit_CircuitPlayground::senseColor(uint8_t& red, uint8_t& green, uint8_t& blue) { // Save the current pixel brightness so it can later be restored. Then bump // the brightness to max to make sure the LED is as bright as possible for // the color readings. uint8_t old_brightness = strip.getBrightness(); strip.setBrightness(255); // Set pixel 1 (next to the light sensor) to full red, green, blue // color and grab a light sensor reading. Make sure to wait a bit // after changing pixel colors to let the light sensor change // resistance! setPixelColor(1, 255, 0, 0); // Red delay(LIGHT_SETTLE_MS); uint16_t raw_red = lightSensor(); setPixelColor(1, 0, 255, 0); // Green delay(LIGHT_SETTLE_MS); uint16_t raw_green = lightSensor(); setPixelColor(1, 0, 0, 255); // Blue delay(LIGHT_SETTLE_MS); uint16_t raw_blue = lightSensor(); // Turn off the pixel and restore brightness, we're done with readings. setPixelColor(1, 0); strip.setBrightness(old_brightness); // Now scale down each of the raw readings to be within // 0 to 255. Remember each sensor reading is from the ADC // which has 10 bits of resolution (0 to 1023), so dividing // by 4 will change the range from 0-1023 to 0-255. Also // use the min function to clamp the value to 255 at most (just // to prevent overflow from 255.xx to 0). red = min(255, raw_red/4); green = min(255, raw_green/4); blue = min(255, raw_blue/4); } /**************************************************************************/ /*! @brief check whether or not this device is a CircuitPlayground Express. @returns True if the device is a CircuitPlayground Express, false if it is a 'classic'. */ /**************************************************************************/ bool Adafruit_CircuitPlayground::isExpress(void) { #ifdef __AVR__ return false; #else return true; #endif } // instantiate static Adafruit_CircuitPlayground CircuitPlayground;