/* * PHY functions * * Copyright (c) 2004-2007 Reyk Floeter * Copyright (c) 2006-2009 Nick Kossifidis * Copyright (c) 2007-2008 Jiri Slaby * Copyright (c) 2008-2009 Felix Fietkau * * Lightly modified for iPXE, July 2009, by Joshua Oreman . * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ FILE_LICENCE ( MIT ); #define _ATH5K_PHY #include #include #include "ath5k.h" #include "reg.h" #include "base.h" #include "rfbuffer.h" #include "rfgain.h" static inline int min(int x, int y) { return (x < y) ? x : y; } static inline int max(int x, int y) { return (x > y) ? x : y; } /* * Used to modify RF Banks before writing them to AR5K_RF_BUFFER */ static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs, u32 val, u8 reg_id, int set) { const struct ath5k_rf_reg *rfreg = NULL; u8 offset, bank, num_bits, col, position; u16 entry; u32 mask, data, last_bit, bits_shifted, first_bit; u32 *rfb; s32 bits_left; unsigned i; data = 0; rfb = ah->ah_rf_banks; for (i = 0; i < ah->ah_rf_regs_count; i++) { if (rf_regs[i].index == reg_id) { rfreg = &rf_regs[i]; break; } } if (rfb == NULL || rfreg == NULL) { DBG("ath5k: RF register not found!\n"); /* should not happen */ return 0; } bank = rfreg->bank; num_bits = rfreg->field.len; first_bit = rfreg->field.pos; col = rfreg->field.col; /* first_bit is an offset from bank's * start. Since we have all banks on * the same array, we use this offset * to mark each bank's start */ offset = ah->ah_offset[bank]; /* Boundary check */ if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) { DBG("ath5k: RF invalid values at offset %d\n", offset); return 0; } entry = ((first_bit - 1) / 8) + offset; position = (first_bit - 1) % 8; if (set) data = ath5k_hw_bitswap(val, num_bits); for (bits_shifted = 0, bits_left = num_bits; bits_left > 0; position = 0, entry++) { last_bit = (position + bits_left > 8) ? 8 : position + bits_left; mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) << (col * 8); if (set) { rfb[entry] &= ~mask; rfb[entry] |= ((data << position) << (col * 8)) & mask; data >>= (8 - position); } else { data |= (((rfb[entry] & mask) >> (col * 8)) >> position) << bits_shifted; bits_shifted += last_bit - position; } bits_left -= 8 - position; } data = set ? 1 : ath5k_hw_bitswap(data, num_bits); return data; } /**********************\ * RF Gain optimization * \**********************/ /* * This code is used to optimize rf gain on different environments * (temprature mostly) based on feedback from a power detector. * * It's only used on RF5111 and RF5112, later RF chips seem to have * auto adjustment on hw -notice they have a much smaller BANK 7 and * no gain optimization ladder-. * * For more infos check out this patent doc * http://www.freepatentsonline.com/7400691.html * * This paper describes power drops as seen on the receiver due to * probe packets * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues * %20of%20Power%20Control.pdf * * And this is the MadWiFi bug entry related to the above * http://madwifi-project.org/ticket/1659 * with various measurements and diagrams * * TODO: Deal with power drops due to probes by setting an apropriate * tx power on the probe packets ! Make this part of the calibration process. */ /* Initialize ah_gain durring attach */ int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah) { /* Initialize the gain optimization values */ switch (ah->ah_radio) { case AR5K_RF5111: ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default; ah->ah_gain.g_low = 20; ah->ah_gain.g_high = 35; ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; break; case AR5K_RF5112: ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default; ah->ah_gain.g_low = 20; ah->ah_gain.g_high = 85; ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; break; default: return -EINVAL; } return 0; } /* Schedule a gain probe check on the next transmited packet. * That means our next packet is going to be sent with lower * tx power and a Peak to Average Power Detector (PAPD) will try * to measure the gain. * * TODO: Use propper tx power setting for the probe packet so * that we don't observe a serious power drop on the receiver * * XXX: How about forcing a tx packet (bypassing PCU arbitrator etc) * just after we enable the probe so that we don't mess with * standard traffic ? Maybe it's time to use sw interrupts and * a probe tasklet !!! */ static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah) { /* Skip if gain calibration is inactive or * we already handle a probe request */ if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE) return; /* Send the packet with 2dB below max power as * patent doc suggest */ ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_max_pwr - 4, AR5K_PHY_PAPD_PROBE_TXPOWER) | AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE); ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED; } /* Calculate gain_F measurement correction * based on the current step for RF5112 rev. 2 */ static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah) { u32 mix, step; const struct ath5k_gain_opt *go; const struct ath5k_gain_opt_step *g_step; const struct ath5k_rf_reg *rf_regs; /* Only RF5112 Rev. 2 supports it */ if ((ah->ah_radio != AR5K_RF5112) || (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A)) return 0; go = &rfgain_opt_5112; rf_regs = rf_regs_5112a; ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a); g_step = &go->go_step[ah->ah_gain.g_step_idx]; if (ah->ah_rf_banks == NULL) return 0; ah->ah_gain.g_f_corr = 0; /* No VGA (Variable Gain Amplifier) override, skip */ if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, 0) != 1) return 0; /* Mix gain stepping */ step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, 0); /* Mix gain override */ mix = g_step->gos_param[0]; switch (mix) { case 3: ah->ah_gain.g_f_corr = step * 2; break; case 2: ah->ah_gain.g_f_corr = (step - 5) * 2; break; case 1: ah->ah_gain.g_f_corr = step; break; default: ah->ah_gain.g_f_corr = 0; break; } return ah->ah_gain.g_f_corr; } /* Check if current gain_F measurement is in the range of our * power detector windows. If we get a measurement outside range * we know it's not accurate (detectors can't measure anything outside * their detection window) so we must ignore it */ static int ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah) { const struct ath5k_rf_reg *rf_regs; u32 step, mix_ovr, level[4]; if (ah->ah_rf_banks == NULL) return 0; if (ah->ah_radio == AR5K_RF5111) { rf_regs = rf_regs_5111; ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111); step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP, 0); level[0] = 0; level[1] = (step == 63) ? 50 : step + 4; level[2] = (step != 63) ? 64 : level[0]; level[3] = level[2] + 50 ; ah->ah_gain.g_high = level[3] - (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5); ah->ah_gain.g_low = level[0] + (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0); } else { rf_regs = rf_regs_5112; ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112); mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, 0); level[0] = level[2] = 0; if (mix_ovr == 1) { level[1] = level[3] = 83; } else { level[1] = level[3] = 107; ah->ah_gain.g_high = 55; } } return (ah->ah_gain.g_current >= level[0] && ah->ah_gain.g_current <= level[1]) || (ah->ah_gain.g_current >= level[2] && ah->ah_gain.g_current <= level[3]); } /* Perform gain_F adjustment by choosing the right set * of parameters from rf gain optimization ladder */ static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah) { const struct ath5k_gain_opt *go; const struct ath5k_gain_opt_step *g_step; int ret = 0; switch (ah->ah_radio) { case AR5K_RF5111: go = &rfgain_opt_5111; break; case AR5K_RF5112: go = &rfgain_opt_5112; break; default: return 0; } g_step = &go->go_step[ah->ah_gain.g_step_idx]; if (ah->ah_gain.g_current >= ah->ah_gain.g_high) { /* Reached maximum */ if (ah->ah_gain.g_step_idx == 0) return -1; for (ah->ah_gain.g_target = ah->ah_gain.g_current; ah->ah_gain.g_target >= ah->ah_gain.g_high && ah->ah_gain.g_step_idx > 0; g_step = &go->go_step[ah->ah_gain.g_step_idx]) ah->ah_gain.g_target -= 2 * (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain - g_step->gos_gain); ret = 1; goto done; } if (ah->ah_gain.g_current <= ah->ah_gain.g_low) { /* Reached minimum */ if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1)) return -2; for (ah->ah_gain.g_target = ah->ah_gain.g_current; ah->ah_gain.g_target <= ah->ah_gain.g_low && ah->ah_gain.g_step_idx < go->go_steps_count-1; g_step = &go->go_step[ah->ah_gain.g_step_idx]) ah->ah_gain.g_target -= 2 * (go->go_step[++ah->ah_gain.g_step_idx].gos_gain - g_step->gos_gain); ret = 2; goto done; } done: DBG2("ath5k RF adjust: ret %d, gain step %d, current gain %d, " "target gain %d\n", ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current, ah->ah_gain.g_target); return ret; } /* Main callback for thermal rf gain calibration engine * Check for a new gain reading and schedule an adjustment * if needed. * * TODO: Use sw interrupt to schedule reset if gain_F needs * adjustment */ enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah) { u32 data, type; struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; if (ah->ah_rf_banks == NULL || ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE) return AR5K_RFGAIN_INACTIVE; /* No check requested, either engine is inactive * or an adjustment is already requested */ if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED) goto done; /* Read the PAPD (Peak to Average Power Detector) * register */ data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE); /* No probe is scheduled, read gain_F measurement */ if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) { ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S; type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE); /* If tx packet is CCK correct the gain_F measurement * by cck ofdm gain delta */ if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) { if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) ah->ah_gain.g_current += ee->ee_cck_ofdm_gain_delta; else ah->ah_gain.g_current += AR5K_GAIN_CCK_PROBE_CORR; } /* Further correct gain_F measurement for * RF5112A radios */ if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) { ath5k_hw_rf_gainf_corr(ah); ah->ah_gain.g_current = ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ? (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) : 0; } /* Check if measurement is ok and if we need * to adjust gain, schedule a gain adjustment, * else switch back to the acive state */ if (ath5k_hw_rf_check_gainf_readback(ah) && AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) && ath5k_hw_rf_gainf_adjust(ah)) { ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE; } else { ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; } } done: return ah->ah_gain.g_state; } /* Write initial rf gain table to set the RF sensitivity * this one works on all RF chips and has nothing to do * with gain_F calibration */ int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq) { const struct ath5k_ini_rfgain *ath5k_rfg; unsigned int i, size; switch (ah->ah_radio) { case AR5K_RF5111: ath5k_rfg = rfgain_5111; size = ARRAY_SIZE(rfgain_5111); break; case AR5K_RF5112: ath5k_rfg = rfgain_5112; size = ARRAY_SIZE(rfgain_5112); break; case AR5K_RF2413: ath5k_rfg = rfgain_2413; size = ARRAY_SIZE(rfgain_2413); break; case AR5K_RF2316: ath5k_rfg = rfgain_2316; size = ARRAY_SIZE(rfgain_2316); break; case AR5K_RF5413: ath5k_rfg = rfgain_5413; size = ARRAY_SIZE(rfgain_5413); break; case AR5K_RF2317: case AR5K_RF2425: ath5k_rfg = rfgain_2425; size = ARRAY_SIZE(rfgain_2425); break; default: return -EINVAL; } switch (freq) { case AR5K_INI_RFGAIN_2GHZ: case AR5K_INI_RFGAIN_5GHZ: break; default: return -EINVAL; } for (i = 0; i < size; i++) { AR5K_REG_WAIT(i); ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq], (u32)ath5k_rfg[i].rfg_register); } return 0; } /********************\ * RF Registers setup * \********************/ /* * Setup RF registers by writing rf buffer on hw */ int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct net80211_channel *channel, unsigned int mode) { const struct ath5k_rf_reg *rf_regs; const struct ath5k_ini_rfbuffer *ini_rfb; const struct ath5k_gain_opt *go = NULL; const struct ath5k_gain_opt_step *g_step; struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; u8 ee_mode = 0; u32 *rfb; int obdb = -1, bank = -1; unsigned i; switch (ah->ah_radio) { case AR5K_RF5111: rf_regs = rf_regs_5111; ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111); ini_rfb = rfb_5111; ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111); go = &rfgain_opt_5111; break; case AR5K_RF5112: if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) { rf_regs = rf_regs_5112a; ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a); ini_rfb = rfb_5112a; ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a); } else { rf_regs = rf_regs_5112; ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112); ini_rfb = rfb_5112; ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112); } go = &rfgain_opt_5112; break; case AR5K_RF2413: rf_regs = rf_regs_2413; ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413); ini_rfb = rfb_2413; ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413); break; case AR5K_RF2316: rf_regs = rf_regs_2316; ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316); ini_rfb = rfb_2316; ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316); break; case AR5K_RF5413: rf_regs = rf_regs_5413; ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413); ini_rfb = rfb_5413; ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413); break; case AR5K_RF2317: rf_regs = rf_regs_2425; ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425); ini_rfb = rfb_2317; ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317); break; case AR5K_RF2425: rf_regs = rf_regs_2425; ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425); if (ah->ah_mac_srev < AR5K_SREV_AR2417) { ini_rfb = rfb_2425; ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425); } else { ini_rfb = rfb_2417; ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417); } break; default: return -EINVAL; } /* If it's the first time we set rf buffer, allocate * ah->ah_rf_banks based on ah->ah_rf_banks_size * we set above */ if (ah->ah_rf_banks == NULL) { ah->ah_rf_banks = malloc(sizeof(u32) * ah->ah_rf_banks_size); if (ah->ah_rf_banks == NULL) { return -ENOMEM; } } /* Copy values to modify them */ rfb = ah->ah_rf_banks; for (i = 0; i < ah->ah_rf_banks_size; i++) { if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) { DBG("ath5k: invalid RF register bank\n"); return -EINVAL; } /* Bank changed, write down the offset */ if (bank != ini_rfb[i].rfb_bank) { bank = ini_rfb[i].rfb_bank; ah->ah_offset[bank] = i; } rfb[i] = ini_rfb[i].rfb_mode_data[mode]; } /* Set Output and Driver bias current (OB/DB) */ if (channel->hw_value & CHANNEL_2GHZ) { if (channel->hw_value & CHANNEL_CCK) ee_mode = AR5K_EEPROM_MODE_11B; else ee_mode = AR5K_EEPROM_MODE_11G; /* For RF511X/RF211X combination we * use b_OB and b_DB parameters stored * in eeprom on ee->ee_ob[ee_mode][0] * * For all other chips we use OB/DB for 2Ghz * stored in the b/g modal section just like * 802.11a on ee->ee_ob[ee_mode][1] */ if ((ah->ah_radio == AR5K_RF5111) || (ah->ah_radio == AR5K_RF5112)) obdb = 0; else obdb = 1; ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb], AR5K_RF_OB_2GHZ, 1); ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb], AR5K_RF_DB_2GHZ, 1); /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */ } else if ((channel->hw_value & CHANNEL_5GHZ) || (ah->ah_radio == AR5K_RF5111)) { /* For 11a, Turbo and XR we need to choose * OB/DB based on frequency range */ ee_mode = AR5K_EEPROM_MODE_11A; obdb = channel->center_freq >= 5725 ? 3 : (channel->center_freq >= 5500 ? 2 : (channel->center_freq >= 5260 ? 1 : (channel->center_freq > 4000 ? 0 : -1))); if (obdb < 0) return -EINVAL; ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb], AR5K_RF_OB_5GHZ, 1); ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb], AR5K_RF_DB_5GHZ, 1); } g_step = &go->go_step[ah->ah_gain.g_step_idx]; /* Bank Modifications (chip-specific) */ if (ah->ah_radio == AR5K_RF5111) { /* Set gain_F settings according to current step */ if (channel->hw_value & CHANNEL_OFDM) { AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL, AR5K_PHY_FRAME_CTL_TX_CLIP, g_step->gos_param[0]); ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1], AR5K_RF_PWD_90, 1); ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2], AR5K_RF_PWD_84, 1); ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3], AR5K_RF_RFGAIN_SEL, 1); /* We programmed gain_F parameters, switch back * to active state */ ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; } /* Bank 6/7 setup */ ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode], AR5K_RF_PWD_XPD, 1); ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode], AR5K_RF_XPD_GAIN, 1); ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode], AR5K_RF_GAIN_I, 1); ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode], AR5K_RF_PLO_SEL, 1); /* TODO: Half/quarter channel support */ } if (ah->ah_radio == AR5K_RF5112) { /* Set gain_F settings according to current step */ if (channel->hw_value & CHANNEL_OFDM) { ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0], AR5K_RF_MIXGAIN_OVR, 1); ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1], AR5K_RF_PWD_138, 1); ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2], AR5K_RF_PWD_137, 1); ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3], AR5K_RF_PWD_136, 1); ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4], AR5K_RF_PWD_132, 1); ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5], AR5K_RF_PWD_131, 1); ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6], AR5K_RF_PWD_130, 1); /* We programmed gain_F parameters, switch back * to active state */ ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; } /* Bank 6/7 setup */ ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode], AR5K_RF_XPD_SEL, 1); if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) { /* Rev. 1 supports only one xpd */ ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode], AR5K_RF_XPD_GAIN, 1); } else { /* TODO: Set high and low gain bits */ ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode], AR5K_RF_PD_GAIN_LO, 1); ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode], AR5K_RF_PD_GAIN_HI, 1); /* Lower synth voltage on Rev 2 */ ath5k_hw_rfb_op(ah, rf_regs, 2, AR5K_RF_HIGH_VC_CP, 1); ath5k_hw_rfb_op(ah, rf_regs, 2, AR5K_RF_MID_VC_CP, 1); ath5k_hw_rfb_op(ah, rf_regs, 2, AR5K_RF_LOW_VC_CP, 1); ath5k_hw_rfb_op(ah, rf_regs, 2, AR5K_RF_PUSH_UP, 1); /* Decrease power consumption on 5213+ BaseBand */ if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) { ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_PAD2GND, 1); ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_XB2_LVL, 1); ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_XB5_LVL, 1); ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_PWD_167, 1); ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_PWD_166, 1); } } ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode], AR5K_RF_GAIN_I, 1); /* TODO: Half/quarter channel support */ } if (ah->ah_radio == AR5K_RF5413 && channel->hw_value & CHANNEL_2GHZ) { ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE, 1); /* Set optimum value for early revisions (on pci-e chips) */ if (ah->ah_mac_srev >= AR5K_SREV_AR5424 && ah->ah_mac_srev < AR5K_SREV_AR5413) ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3), AR5K_RF_PWD_ICLOBUF_2G, 1); } /* Write RF banks on hw */ for (i = 0; i < ah->ah_rf_banks_size; i++) { AR5K_REG_WAIT(i); ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register); } return 0; } /**************************\ PHY/RF channel functions \**************************/ /* * Check if a channel is supported */ int ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags) { /* Check if the channel is in our supported range */ if (flags & CHANNEL_2GHZ) { if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) && (freq <= ah->ah_capabilities.cap_range.range_2ghz_max)) return 1; } else if (flags & CHANNEL_5GHZ) if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) && (freq <= ah->ah_capabilities.cap_range.range_5ghz_max)) return 1; return 0; } /* * Convertion needed for RF5110 */ static u32 ath5k_hw_rf5110_chan2athchan(struct net80211_channel *channel) { u32 athchan; /* * Convert IEEE channel/MHz to an internal channel value used * by the AR5210 chipset. This has not been verified with * newer chipsets like the AR5212A who have a completely * different RF/PHY part. */ athchan = (ath5k_hw_bitswap((ath5k_freq_to_channel(channel->center_freq) - 24) / 2, 5) << 1) | (1 << 6) | 0x1; return athchan; } /* * Set channel on RF5110 */ static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah, struct net80211_channel *channel) { u32 data; /* * Set the channel and wait */ data = ath5k_hw_rf5110_chan2athchan(channel); ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER); ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0); mdelay(1); return 0; } /* * Convertion needed for 5111 */ static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee, struct ath5k_athchan_2ghz *athchan) { int channel; /* Cast this value to catch negative channel numbers (>= -19) */ channel = (int)ieee; /* * Map 2GHz IEEE channel to 5GHz Atheros channel */ if (channel <= 13) { athchan->a2_athchan = 115 + channel; athchan->a2_flags = 0x46; } else if (channel == 14) { athchan->a2_athchan = 124; athchan->a2_flags = 0x44; } else if (channel >= 15 && channel <= 26) { athchan->a2_athchan = ((channel - 14) * 4) + 132; athchan->a2_flags = 0x46; } else return -EINVAL; return 0; } /* * Set channel on 5111 */ static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah, struct net80211_channel *channel) { struct ath5k_athchan_2ghz ath5k_channel_2ghz; unsigned int ath5k_channel = ath5k_freq_to_channel(channel->center_freq); u32 data0, data1, clock; int ret; /* * Set the channel on the RF5111 radio */ data0 = data1 = 0; if (channel->hw_value & CHANNEL_2GHZ) { /* Map 2GHz channel to 5GHz Atheros channel ID */ ret = ath5k_hw_rf5111_chan2athchan(ath5k_channel, &ath5k_channel_2ghz); if (ret) return ret; ath5k_channel = ath5k_channel_2ghz.a2_athchan; data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff) << 5) | (1 << 4); } if (ath5k_channel < 145 || !(ath5k_channel & 1)) { clock = 1; data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) | (clock << 1) | (1 << 10) | 1; } else { clock = 0; data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff) << 2) | (clock << 1) | (1 << 10) | 1; } ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8), AR5K_RF_BUFFER); ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00), AR5K_RF_BUFFER_CONTROL_3); return 0; } /* * Set channel on 5112 and newer */ static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah, struct net80211_channel *channel) { u32 data, data0, data1, data2; u16 c; data = data0 = data1 = data2 = 0; c = channel->center_freq; if (c < 4800) { if (!((c - 2224) % 5)) { data0 = ((2 * (c - 704)) - 3040) / 10; data1 = 1; } else if (!((c - 2192) % 5)) { data0 = ((2 * (c - 672)) - 3040) / 10; data1 = 0; } else return -EINVAL; data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8); } else if ((c - (c % 5)) != 2 || c > 5435) { if (!(c % 20) && c >= 5120) { data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8); data2 = ath5k_hw_bitswap(3, 2); } else if (!(c % 10)) { data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8); data2 = ath5k_hw_bitswap(2, 2); } else if (!(c % 5)) { data0 = ath5k_hw_bitswap((c - 4800) / 5, 8); data2 = ath5k_hw_bitswap(1, 2); } else return -EINVAL; } else { data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8); data2 = ath5k_hw_bitswap(0, 2); } data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001; ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER); ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5); return 0; } /* * Set the channel on the RF2425 */ static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah, struct net80211_channel *channel) { u32 data, data0, data2; u16 c; data = data0 = data2 = 0; c = channel->center_freq; if (c < 4800) { data0 = ath5k_hw_bitswap((c - 2272), 8); data2 = 0; /* ? 5GHz ? */ } else if ((c - (c % 5)) != 2 || c > 5435) { if (!(c % 20) && c < 5120) data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8); else if (!(c % 10)) data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8); else if (!(c % 5)) data0 = ath5k_hw_bitswap((c - 4800) / 5, 8); else return -EINVAL; data2 = ath5k_hw_bitswap(1, 2); } else { data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8); data2 = ath5k_hw_bitswap(0, 2); } data = (data0 << 4) | data2 << 2 | 0x1001; ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER); ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5); return 0; } /* * Set a channel on the radio chip */ int ath5k_hw_channel(struct ath5k_hw *ah, struct net80211_channel *channel) { int ret; /* * Check bounds supported by the PHY (we don't care about regultory * restrictions at this point). Note: hw_value already has the band * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok() * of the band by that */ if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) { DBG("ath5k: channel frequency (%d MHz) out of supported " "range\n", channel->center_freq); return -EINVAL; } /* * Set the channel and wait */ switch (ah->ah_radio) { case AR5K_RF5110: ret = ath5k_hw_rf5110_channel(ah, channel); break; case AR5K_RF5111: ret = ath5k_hw_rf5111_channel(ah, channel); break; case AR5K_RF2425: ret = ath5k_hw_rf2425_channel(ah, channel); break; default: ret = ath5k_hw_rf5112_channel(ah, channel); break; } if (ret) { DBG("ath5k: setting channel failed: %s\n", strerror(ret)); return ret; } /* Set JAPAN setting for channel 14 */ if (channel->center_freq == 2484) { AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL, AR5K_PHY_CCKTXCTL_JAPAN); } else { AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL, AR5K_PHY_CCKTXCTL_WORLD); } ah->ah_current_channel = channel; ah->ah_turbo = (channel->hw_value == CHANNEL_T ? 1 : 0); return 0; } /*****************\ PHY calibration \*****************/ /** * ath5k_hw_noise_floor_calibration - perform PHY noise floor calibration * * @ah: struct ath5k_hw pointer we are operating on * @freq: the channel frequency, just used for error logging * * This function performs a noise floor calibration of the PHY and waits for * it to complete. Then the noise floor value is compared to some maximum * noise floor we consider valid. * * Note that this is different from what the madwifi HAL does: it reads the * noise floor and afterwards initiates the calibration. Since the noise floor * calibration can take some time to finish, depending on the current channel * use, that avoids the occasional timeout warnings we are seeing now. * * See the following link for an Atheros patent on noise floor calibration: * http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL \ * &p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7245893.PN.&OS=PN/7 * * XXX: Since during noise floor calibration antennas are detached according to * the patent, we should stop tx queues here. */ int ath5k_hw_noise_floor_calibration(struct ath5k_hw *ah, short freq) { int ret; unsigned int i; s32 noise_floor; /* * Enable noise floor calibration */ AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF); ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF, 0, 0); if (ret) { DBG("ath5k: noise floor calibration timeout (%d MHz)\n", freq); return -EAGAIN; } /* Wait until the noise floor is calibrated and read the value */ for (i = 20; i > 0; i--) { mdelay(1); noise_floor = ath5k_hw_reg_read(ah, AR5K_PHY_NF); noise_floor = AR5K_PHY_NF_RVAL(noise_floor); if (noise_floor & AR5K_PHY_NF_ACTIVE) { noise_floor = AR5K_PHY_NF_AVAL(noise_floor); if (noise_floor <= AR5K_TUNE_NOISE_FLOOR) break; } } DBG2("ath5k: noise floor %d\n", noise_floor); if (noise_floor > AR5K_TUNE_NOISE_FLOOR) { DBG("ath5k: noise floor calibration failed (%d MHz)\n", freq); return -EAGAIN; } ah->ah_noise_floor = noise_floor; return 0; } /* * Perform a PHY calibration on RF5110 * -Fix BPSK/QAM Constellation (I/Q correction) * -Calculate Noise Floor */ static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah, struct net80211_channel *channel) { u32 phy_sig, phy_agc, phy_sat, beacon; int ret; /* * Disable beacons and RX/TX queues, wait */ AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210, AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210); beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210); ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210); mdelay(2); /* * Set the channel (with AGC turned off) */ AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); udelay(10); ret = ath5k_hw_channel(ah, channel); /* * Activate PHY and wait */ ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT); mdelay(1); AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); if (ret) return ret; /* * Calibrate the radio chip */ /* Remember normal state */ phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG); phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE); phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT); /* Update radio registers */ ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) | AR5K_REG_SM(-1U, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG); ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI | AR5K_PHY_AGCCOARSE_LO)) | AR5K_REG_SM(-1U, AR5K_PHY_AGCCOARSE_HI) | AR5K_REG_SM(-127U, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE); ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT | AR5K_PHY_ADCSAT_THR)) | AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) | AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT); udelay(20); AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); udelay(10); ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG); AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); mdelay(1); /* * Enable calibration and wait until completion */ AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL); ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL, 0, 0); /* Reset to normal state */ ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG); ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE); ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT); if (ret) { DBG("ath5k: calibration timeout (%d MHz)\n", channel->center_freq); return ret; } ath5k_hw_noise_floor_calibration(ah, channel->center_freq); /* * Re-enable RX/TX and beacons */ AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210, AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210); ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210); return 0; } /* * Perform a PHY calibration on RF5111/5112 and newer chips */ static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah, struct net80211_channel *channel) { u32 i_pwr, q_pwr; s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd; int i; if (!ah->ah_calibration || ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) goto done; /* Calibration has finished, get the results and re-run */ for (i = 0; i <= 10; i++) { iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR); i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I); q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q); } i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7; q_coffd = q_pwr >> 7; /* No correction */ if (i_coffd == 0 || q_coffd == 0) goto done; i_coff = ((-iq_corr) / i_coffd) & 0x3f; /* Boundary check */ if (i_coff > 31) i_coff = 31; if (i_coff < -32) i_coff = -32; q_coff = (((s32)i_pwr / q_coffd) - 128) & 0x1f; /* Boundary check */ if (q_coff > 15) q_coff = 15; if (q_coff < -16) q_coff = -16; /* Commit new I/Q value */ AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE | ((u32)q_coff) | ((u32)i_coff << AR5K_PHY_IQ_CORR_Q_I_COFF_S)); /* Re-enable calibration -if we don't we'll commit * the same values again and again */ AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15); AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN); done: /* TODO: Separate noise floor calibration from I/Q calibration * since noise floor calibration interrupts rx path while I/Q * calibration doesn't. We don't need to run noise floor calibration * as often as I/Q calibration.*/ ath5k_hw_noise_floor_calibration(ah, channel->center_freq); /* Initiate a gain_F calibration */ ath5k_hw_request_rfgain_probe(ah); return 0; } /* * Perform a PHY calibration */ int ath5k_hw_phy_calibrate(struct ath5k_hw *ah, struct net80211_channel *channel) { int ret; if (ah->ah_radio == AR5K_RF5110) ret = ath5k_hw_rf5110_calibrate(ah, channel); else ret = ath5k_hw_rf511x_calibrate(ah, channel); return ret; } int ath5k_hw_phy_disable(struct ath5k_hw *ah) { ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT); return 0; } /********************\ Misc PHY functions \********************/ /* * Get the PHY Chip revision */ u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan) { unsigned int i; u32 srev; u16 ret; /* * Set the radio chip access register */ switch (chan) { case CHANNEL_2GHZ: ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0)); break; case CHANNEL_5GHZ: ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); break; default: return 0; } mdelay(2); /* ...wait until PHY is ready and read the selected radio revision */ ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34)); for (i = 0; i < 8; i++) ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20)); if (ah->ah_version == AR5K_AR5210) { srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf; ret = (u16)ath5k_hw_bitswap(srev, 4) + 1; } else { srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff; ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) | ((srev & 0x0f) << 4), 8); } /* Reset to the 5GHz mode */ ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); return ret; } void /*TODO:Boundary check*/ ath5k_hw_set_def_antenna(struct ath5k_hw *ah, unsigned int ant) { if (ah->ah_version != AR5K_AR5210) ath5k_hw_reg_write(ah, ant, AR5K_DEFAULT_ANTENNA); } unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah) { if (ah->ah_version != AR5K_AR5210) return ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA); return 0; /*XXX: What do we return for 5210 ?*/ } /****************\ * TX power setup * \****************/ /* * Helper functions */ /* * Do linear interpolation between two given (x, y) points */ static s16 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right, s16 y_left, s16 y_right) { s16 ratio, result; /* Avoid divide by zero and skip interpolation * if we have the same point */ if ((x_left == x_right) || (y_left == y_right)) return y_left; /* * Since we use ints and not fps, we need to scale up in * order to get a sane ratio value (or else we 'll eg. get * always 1 instead of 1.25, 1.75 etc). We scale up by 100 * to have some accuracy both for 0.5 and 0.25 steps. */ ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left)); /* Now scale down to be in range */ result = y_left + (ratio * (target - x_left) / 100); return result; } /* * Find vertical boundary (min pwr) for the linear PCDAC curve. * * Since we have the top of the curve and we draw the line below * until we reach 1 (1 pcdac step) we need to know which point * (x value) that is so that we don't go below y axis and have negative * pcdac values when creating the curve, or fill the table with zeroes. */ static s16 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR, const s16 *pwrL, const s16 *pwrR) { s8 tmp; s16 min_pwrL, min_pwrR; s16 pwr_i; if (pwrL[0] == pwrL[1]) min_pwrL = pwrL[0]; else { pwr_i = pwrL[0]; do { pwr_i--; tmp = (s8) ath5k_get_interpolated_value(pwr_i, pwrL[0], pwrL[1], stepL[0], stepL[1]); } while (tmp > 1); min_pwrL = pwr_i; } if (pwrR[0] == pwrR[1]) min_pwrR = pwrR[0]; else { pwr_i = pwrR[0]; do { pwr_i--; tmp = (s8) ath5k_get_interpolated_value(pwr_i, pwrR[0], pwrR[1], stepR[0], stepR[1]); } while (tmp > 1); min_pwrR = pwr_i; } /* Keep the right boundary so that it works for both curves */ return max(min_pwrL, min_pwrR); } /* * Interpolate (pwr,vpd) points to create a Power to PDADC or a * Power to PCDAC curve. * * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC * steps (offsets) on y axis. Power can go up to 31.5dB and max * PCDAC/PDADC step for each curve is 64 but we can write more than * one curves on hw so we can go up to 128 (which is the max step we * can write on the final table). * * We write y values (PCDAC/PDADC steps) on hw. */ static void ath5k_create_power_curve(s16 pmin, s16 pmax, const s16 *pwr, const u8 *vpd, u8 num_points, u8 *vpd_table, u8 type) { u8 idx[2] = { 0, 1 }; s16 pwr_i = 2*pmin; int i; if (num_points < 2) return; /* We want the whole line, so adjust boundaries * to cover the entire power range. Note that * power values are already 0.25dB so no need * to multiply pwr_i by 2 */ if (type == AR5K_PWRTABLE_LINEAR_PCDAC) { pwr_i = pmin; pmin = 0; pmax = 63; } /* Find surrounding turning points (TPs) * and interpolate between them */ for (i = 0; (i <= (u16) (pmax - pmin)) && (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) { /* We passed the right TP, move to the next set of TPs * if we pass the last TP, extrapolate above using the last * two TPs for ratio */ if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) { idx[0]++; idx[1]++; } vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i, pwr[idx[0]], pwr[idx[1]], vpd[idx[0]], vpd[idx[1]]); /* Increase by 0.5dB * (0.25 dB units) */ pwr_i += 2; } } /* * Get the surrounding per-channel power calibration piers * for a given frequency so that we can interpolate between * them and come up with an apropriate dataset for our current * channel. */ static void ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah, struct net80211_channel *channel, struct ath5k_chan_pcal_info **pcinfo_l, struct ath5k_chan_pcal_info **pcinfo_r) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; struct ath5k_chan_pcal_info *pcinfo; u8 idx_l, idx_r; u8 mode, max, i; u32 target = channel->center_freq; idx_l = 0; idx_r = 0; if (!(channel->hw_value & CHANNEL_OFDM)) { pcinfo = ee->ee_pwr_cal_b; mode = AR5K_EEPROM_MODE_11B; } else if (channel->hw_value & CHANNEL_2GHZ) { pcinfo = ee->ee_pwr_cal_g; mode = AR5K_EEPROM_MODE_11G; } else { pcinfo = ee->ee_pwr_cal_a; mode = AR5K_EEPROM_MODE_11A; } max = ee->ee_n_piers[mode] - 1; /* Frequency is below our calibrated * range. Use the lowest power curve * we have */ if (target < pcinfo[0].freq) { idx_l = idx_r = 0; goto done; } /* Frequency is above our calibrated * range. Use the highest power curve * we have */ if (target > pcinfo[max].freq) { idx_l = idx_r = max; goto done; } /* Frequency is inside our calibrated * channel range. Pick the surrounding * calibration piers so that we can * interpolate */ for (i = 0; i <= max; i++) { /* Frequency matches one of our calibration * piers, no need to interpolate, just use * that calibration pier */ if (pcinfo[i].freq == target) { idx_l = idx_r = i; goto done; } /* We found a calibration pier that's above * frequency, use this pier and the previous * one to interpolate */ if (target < pcinfo[i].freq) { idx_r = i; idx_l = idx_r - 1; goto done; } } done: *pcinfo_l = &pcinfo[idx_l]; *pcinfo_r = &pcinfo[idx_r]; return; } /* * Get the surrounding per-rate power calibration data * for a given frequency and interpolate between power * values to set max target power supported by hw for * each rate. */ static void ath5k_get_rate_pcal_data(struct ath5k_hw *ah, struct net80211_channel *channel, struct ath5k_rate_pcal_info *rates) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; struct ath5k_rate_pcal_info *rpinfo; u8 idx_l, idx_r; u8 mode, max, i; u32 target = channel->center_freq; idx_l = 0; idx_r = 0; if (!(channel->hw_value & CHANNEL_OFDM)) { rpinfo = ee->ee_rate_tpwr_b; mode = AR5K_EEPROM_MODE_11B; } else if (channel->hw_value & CHANNEL_2GHZ) { rpinfo = ee->ee_rate_tpwr_g; mode = AR5K_EEPROM_MODE_11G; } else { rpinfo = ee->ee_rate_tpwr_a; mode = AR5K_EEPROM_MODE_11A; } max = ee->ee_rate_target_pwr_num[mode] - 1; /* Get the surrounding calibration * piers - same as above */ if (target < rpinfo[0].freq) { idx_l = idx_r = 0; goto done; } if (target > rpinfo[max].freq) { idx_l = idx_r = max; goto done; } for (i = 0; i <= max; i++) { if (rpinfo[i].freq == target) { idx_l = idx_r = i; goto done; } if (target < rpinfo[i].freq) { idx_r = i; idx_l = idx_r - 1; goto done; } } done: /* Now interpolate power value, based on the frequency */ rates->freq = target; rates->target_power_6to24 = ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, rpinfo[idx_r].freq, rpinfo[idx_l].target_power_6to24, rpinfo[idx_r].target_power_6to24); rates->target_power_36 = ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, rpinfo[idx_r].freq, rpinfo[idx_l].target_power_36, rpinfo[idx_r].target_power_36); rates->target_power_48 = ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, rpinfo[idx_r].freq, rpinfo[idx_l].target_power_48, rpinfo[idx_r].target_power_48); rates->target_power_54 = ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, rpinfo[idx_r].freq, rpinfo[idx_l].target_power_54, rpinfo[idx_r].target_power_54); } /* * Get the max edge power for this channel if * we have such data from EEPROM's Conformance Test * Limits (CTL), and limit max power if needed. * * FIXME: Only works for world regulatory domains */ static void ath5k_get_max_ctl_power(struct ath5k_hw *ah, struct net80211_channel *channel) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; struct ath5k_edge_power *rep = ee->ee_ctl_pwr; u8 *ctl_val = ee->ee_ctl; s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4; s16 edge_pwr = 0; u8 rep_idx; u8 i, ctl_mode; u8 ctl_idx = 0xFF; u32 target = channel->center_freq; /* Find out a CTL for our mode that's not mapped * on a specific reg domain. * * TODO: Map our current reg domain to one of the 3 available * reg domain ids so that we can support more CTLs. */ switch (channel->hw_value & CHANNEL_MODES) { case CHANNEL_A: ctl_mode = AR5K_CTL_11A | AR5K_CTL_NO_REGDOMAIN; break; case CHANNEL_G: ctl_mode = AR5K_CTL_11G | AR5K_CTL_NO_REGDOMAIN; break; case CHANNEL_B: ctl_mode = AR5K_CTL_11B | AR5K_CTL_NO_REGDOMAIN; break; case CHANNEL_T: ctl_mode = AR5K_CTL_TURBO | AR5K_CTL_NO_REGDOMAIN; break; case CHANNEL_TG: ctl_mode = AR5K_CTL_TURBOG | AR5K_CTL_NO_REGDOMAIN; break; case CHANNEL_XR: /* Fall through */ default: return; } for (i = 0; i < ee->ee_ctls; i++) { if (ctl_val[i] == ctl_mode) { ctl_idx = i; break; } } /* If we have a CTL dataset available grab it and find the * edge power for our frequency */ if (ctl_idx == 0xFF) return; /* Edge powers are sorted by frequency from lower * to higher. Each CTL corresponds to 8 edge power * measurements. */ rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES; /* Don't do boundaries check because we * might have more that one bands defined * for this mode */ /* Get the edge power that's closer to our * frequency */ for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) { rep_idx += i; if (target <= rep[rep_idx].freq) edge_pwr = (s16) rep[rep_idx].edge; } if (edge_pwr) { ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr); } } /* * Power to PCDAC table functions */ /* * Fill Power to PCDAC table on RF5111 * * No further processing is needed for RF5111, the only thing we have to * do is fill the values below and above calibration range since eeprom data * may not cover the entire PCDAC table. */ static void ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min, s16 *table_max) { u8 *pcdac_out = ah->ah_txpower.txp_pd_table; u8 *pcdac_tmp = ah->ah_txpower.tmpL[0]; u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i; s16 min_pwr, max_pwr; /* Get table boundaries */ min_pwr = table_min[0]; pcdac_0 = pcdac_tmp[0]; max_pwr = table_max[0]; pcdac_n = pcdac_tmp[table_max[0] - table_min[0]]; /* Extrapolate below minimum using pcdac_0 */ pcdac_i = 0; for (i = 0; i < min_pwr; i++) pcdac_out[pcdac_i++] = pcdac_0; /* Copy values from pcdac_tmp */ pwr_idx = min_pwr; for (i = 0 ; pwr_idx <= max_pwr && pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) { pcdac_out[pcdac_i++] = pcdac_tmp[i]; pwr_idx++; } /* Extrapolate above maximum */ while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE) pcdac_out[pcdac_i++] = pcdac_n; } /* * Combine available XPD Curves and fill Linear Power to PCDAC table * on RF5112 * * RFX112 can have up to 2 curves (one for low txpower range and one for * higher txpower range). We need to put them both on pcdac_out and place * them in the correct location. In case we only have one curve available * just fit it on pcdac_out (it's supposed to cover the entire range of * available pwr levels since it's always the higher power curve). Extrapolate * below and above final table if needed. */ static void ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min, s16 *table_max, u8 pdcurves) { u8 *pcdac_out = ah->ah_txpower.txp_pd_table; u8 *pcdac_low_pwr; u8 *pcdac_high_pwr; u8 *pcdac_tmp; u8 pwr; s16 max_pwr_idx; s16 min_pwr_idx; s16 mid_pwr_idx = 0; /* Edge flag turs on the 7nth bit on the PCDAC * to delcare the higher power curve (force values * to be greater than 64). If we only have one curve * we don't need to set this, if we have 2 curves and * fill the table backwards this can also be used to * switch from higher power curve to lower power curve */ u8 edge_flag; int i; /* When we have only one curve available * that's the higher power curve. If we have * two curves the first is the high power curve * and the next is the low power curve. */ if (pdcurves > 1) { pcdac_low_pwr = ah->ah_txpower.tmpL[1]; pcdac_high_pwr = ah->ah_txpower.tmpL[0]; mid_pwr_idx = table_max[1] - table_min[1] - 1; max_pwr_idx = (table_max[0] - table_min[0]) / 2; /* If table size goes beyond 31.5dB, keep the * upper 31.5dB range when setting tx power. * Note: 126 = 31.5 dB in quarter dB steps */ if (table_max[0] - table_min[1] > 126) min_pwr_idx = table_max[0] - 126; else min_pwr_idx = table_min[1]; /* Since we fill table backwards * start from high power curve */ pcdac_tmp = pcdac_high_pwr; edge_flag = 0x40; } else { pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */ pcdac_high_pwr = ah->ah_txpower.tmpL[0]; min_pwr_idx = table_min[0]; max_pwr_idx = (table_max[0] - table_min[0]) / 2; pcdac_tmp = pcdac_high_pwr; edge_flag = 0; } /* This is used when setting tx power*/ ah->ah_txpower.txp_min_idx = min_pwr_idx/2; /* Fill Power to PCDAC table backwards */ pwr = max_pwr_idx; for (i = 63; i >= 0; i--) { /* Entering lower power range, reset * edge flag and set pcdac_tmp to lower * power curve.*/ if (edge_flag == 0x40 && (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) { edge_flag = 0x00; pcdac_tmp = pcdac_low_pwr; pwr = mid_pwr_idx/2; } /* Don't go below 1, extrapolate below if we have * already swithced to the lower power curve -or * we only have one curve and edge_flag is zero * anyway */ if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) { while (i >= 0) { pcdac_out[i] = pcdac_out[i + 1]; i--; } break; } pcdac_out[i] = pcdac_tmp[pwr] | edge_flag; /* Extrapolate above if pcdac is greater than * 126 -this can happen because we OR pcdac_out * value with edge_flag on high power curve */ if (pcdac_out[i] > 126) pcdac_out[i] = 126; /* Decrease by a 0.5dB step */ pwr--; } } /* Write PCDAC values on hw */ static void ath5k_setup_pcdac_table(struct ath5k_hw *ah) { u8 *pcdac_out = ah->ah_txpower.txp_pd_table; int i; /* * Write TX power values */ for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) { ath5k_hw_reg_write(ah, (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) | (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16), AR5K_PHY_PCDAC_TXPOWER(i)); } } /* * Power to PDADC table functions */ /* * Set the gain boundaries and create final Power to PDADC table * * We can have up to 4 pd curves, we need to do a simmilar process * as we do for RF5112. This time we don't have an edge_flag but we * set the gain boundaries on a separate register. */ static void ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah, s16 *pwr_min, s16 *pwr_max, u8 pdcurves) { u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS]; u8 *pdadc_out = ah->ah_txpower.txp_pd_table; u8 *pdadc_tmp; s16 pdadc_0; u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size; u8 pd_gain_overlap; /* Note: Register value is initialized on initvals * there is no feedback from hw. * XXX: What about pd_gain_overlap from EEPROM ? */ pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) & AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP; /* Create final PDADC table */ for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) { pdadc_tmp = ah->ah_txpower.tmpL[pdg]; if (pdg == pdcurves - 1) /* 2 dB boundary stretch for last * (higher power) curve */ gain_boundaries[pdg] = pwr_max[pdg] + 4; else /* Set gain boundary in the middle * between this curve and the next one */ gain_boundaries[pdg] = (pwr_max[pdg] + pwr_min[pdg + 1]) / 2; /* Sanity check in case our 2 db stretch got out of * range. */ if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER) gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER; /* For the first curve (lower power) * start from 0 dB */ if (pdg == 0) pdadc_0 = 0; else /* For the other curves use the gain overlap */ pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) - pd_gain_overlap; /* Force each power step to be at least 0.5 dB */ if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1) pwr_step = pdadc_tmp[1] - pdadc_tmp[0]; else pwr_step = 1; /* If pdadc_0 is negative, we need to extrapolate * below this pdgain by a number of pwr_steps */ while ((pdadc_0 < 0) && (pdadc_i < 128)) { s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step; pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp; pdadc_0++; } /* Set last pwr level, using gain boundaries */ pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg]; /* Limit it to be inside pwr range */ table_size = pwr_max[pdg] - pwr_min[pdg]; max_idx = (pdadc_n < table_size) ? pdadc_n : table_size; /* Fill pdadc_out table */ while (pdadc_0 < max_idx) pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++]; /* Need to extrapolate above this pdgain? */ if (pdadc_n <= max_idx) continue; /* Force each power step to be at least 0.5 dB */ if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1) pwr_step = pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]; else pwr_step = 1; /* Extrapolate above */ while ((pdadc_0 < (s16) pdadc_n) && (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) { s16 tmp = pdadc_tmp[table_size - 1] + (pdadc_0 - max_idx) * pwr_step; pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp; pdadc_0++; } } while (pdg < AR5K_EEPROM_N_PD_GAINS) { gain_boundaries[pdg] = gain_boundaries[pdg - 1]; pdg++; } while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) { pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1]; pdadc_i++; } /* Set gain boundaries */ ath5k_hw_reg_write(ah, AR5K_REG_SM(pd_gain_overlap, AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) | AR5K_REG_SM(gain_boundaries[0], AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) | AR5K_REG_SM(gain_boundaries[1], AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) | AR5K_REG_SM(gain_boundaries[2], AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) | AR5K_REG_SM(gain_boundaries[3], AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4), AR5K_PHY_TPC_RG5); /* Used for setting rate power table */ ah->ah_txpower.txp_min_idx = pwr_min[0]; } /* Write PDADC values on hw */ static void ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 pdcurves, u8 *pdg_to_idx) { u8 *pdadc_out = ah->ah_txpower.txp_pd_table; u32 reg; u8 i; /* Select the right pdgain curves */ /* Clear current settings */ reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1); reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 | AR5K_PHY_TPC_RG1_PDGAIN_2 | AR5K_PHY_TPC_RG1_PDGAIN_3 | AR5K_PHY_TPC_RG1_NUM_PD_GAIN); /* * Use pd_gains curve from eeprom * * This overrides the default setting from initvals * in case some vendors (e.g. Zcomax) don't use the default * curves. If we don't honor their settings we 'll get a * 5dB (1 * gain overlap ?) drop. */ reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN); switch (pdcurves) { case 3: reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3); /* Fall through */ case 2: reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2); /* Fall through */ case 1: reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1); break; } ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1); /* * Write TX power values */ for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) { ath5k_hw_reg_write(ah, ((pdadc_out[4*i + 0] & 0xff) << 0) | ((pdadc_out[4*i + 1] & 0xff) << 8) | ((pdadc_out[4*i + 2] & 0xff) << 16) | ((pdadc_out[4*i + 3] & 0xff) << 24), AR5K_PHY_PDADC_TXPOWER(i)); } } /* * Common code for PCDAC/PDADC tables */ /* * This is the main function that uses all of the above * to set PCDAC/PDADC table on hw for the current channel. * This table is used for tx power calibration on the basband, * without it we get weird tx power levels and in some cases * distorted spectral mask */ static int ath5k_setup_channel_powertable(struct ath5k_hw *ah, struct net80211_channel *channel, u8 ee_mode, u8 type) { struct ath5k_pdgain_info *pdg_L, *pdg_R; struct ath5k_chan_pcal_info *pcinfo_L; struct ath5k_chan_pcal_info *pcinfo_R; struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode]; s16 table_min[AR5K_EEPROM_N_PD_GAINS]; s16 table_max[AR5K_EEPROM_N_PD_GAINS]; u8 *tmpL; u8 *tmpR; u32 target = channel->center_freq; int pdg, i; /* Get surounding freq piers for this channel */ ath5k_get_chan_pcal_surrounding_piers(ah, channel, &pcinfo_L, &pcinfo_R); /* Loop over pd gain curves on * surounding freq piers by index */ for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) { /* Fill curves in reverse order * from lower power (max gain) * to higher power. Use curve -> idx * backmaping we did on eeprom init */ u8 idx = pdg_curve_to_idx[pdg]; /* Grab the needed curves by index */ pdg_L = &pcinfo_L->pd_curves[idx]; pdg_R = &pcinfo_R->pd_curves[idx]; /* Initialize the temp tables */ tmpL = ah->ah_txpower.tmpL[pdg]; tmpR = ah->ah_txpower.tmpR[pdg]; /* Set curve's x boundaries and create * curves so that they cover the same * range (if we don't do that one table * will have values on some range and the * other one won't have any so interpolation * will fail) */ table_min[pdg] = min(pdg_L->pd_pwr[0], pdg_R->pd_pwr[0]) / 2; table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1], pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2; /* Now create the curves on surrounding channels * and interpolate if needed to get the final * curve for this gain on this channel */ switch (type) { case AR5K_PWRTABLE_LINEAR_PCDAC: /* Override min/max so that we don't loose * accuracy (don't divide by 2) */ table_min[pdg] = min(pdg_L->pd_pwr[0], pdg_R->pd_pwr[0]); table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1], pdg_R->pd_pwr[pdg_R->pd_points - 1]); /* Override minimum so that we don't get * out of bounds while extrapolating * below. Don't do this when we have 2 * curves and we are on the high power curve * because table_min is ok in this case */ if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) { table_min[pdg] = ath5k_get_linear_pcdac_min(pdg_L->pd_step, pdg_R->pd_step, pdg_L->pd_pwr, pdg_R->pd_pwr); /* Don't go too low because we will * miss the upper part of the curve. * Note: 126 = 31.5dB (max power supported) * in 0.25dB units */ if (table_max[pdg] - table_min[pdg] > 126) table_min[pdg] = table_max[pdg] - 126; } /* Fall through */ case AR5K_PWRTABLE_PWR_TO_PCDAC: case AR5K_PWRTABLE_PWR_TO_PDADC: ath5k_create_power_curve(table_min[pdg], table_max[pdg], pdg_L->pd_pwr, pdg_L->pd_step, pdg_L->pd_points, tmpL, type); /* We are in a calibration * pier, no need to interpolate * between freq piers */ if (pcinfo_L == pcinfo_R) continue; ath5k_create_power_curve(table_min[pdg], table_max[pdg], pdg_R->pd_pwr, pdg_R->pd_step, pdg_R->pd_points, tmpR, type); break; default: return -EINVAL; } /* Interpolate between curves * of surounding freq piers to * get the final curve for this * pd gain. Re-use tmpL for interpolation * output */ for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) && (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) { tmpL[i] = (u8) ath5k_get_interpolated_value(target, (s16) pcinfo_L->freq, (s16) pcinfo_R->freq, (s16) tmpL[i], (s16) tmpR[i]); } } /* Now we have a set of curves for this * channel on tmpL (x range is table_max - table_min * and y values are tmpL[pdg][]) sorted in the same * order as EEPROM (because we've used the backmaping). * So for RF5112 it's from higher power to lower power * and for RF2413 it's from lower power to higher power. * For RF5111 we only have one curve. */ /* Fill min and max power levels for this * channel by interpolating the values on * surounding channels to complete the dataset */ ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target, (s16) pcinfo_L->freq, (s16) pcinfo_R->freq, pcinfo_L->min_pwr, pcinfo_R->min_pwr); ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target, (s16) pcinfo_L->freq, (s16) pcinfo_R->freq, pcinfo_L->max_pwr, pcinfo_R->max_pwr); /* We are ready to go, fill PCDAC/PDADC * table and write settings on hardware */ switch (type) { case AR5K_PWRTABLE_LINEAR_PCDAC: /* For RF5112 we can have one or two curves * and each curve covers a certain power lvl * range so we need to do some more processing */ ath5k_combine_linear_pcdac_curves(ah, table_min, table_max, ee->ee_pd_gains[ee_mode]); /* Set txp.offset so that we can * match max power value with max * table index */ ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2); /* Write settings on hw */ ath5k_setup_pcdac_table(ah); break; case AR5K_PWRTABLE_PWR_TO_PCDAC: /* We are done for RF5111 since it has only * one curve, just fit the curve on the table */ ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max); /* No rate powertable adjustment for RF5111 */ ah->ah_txpower.txp_min_idx = 0; ah->ah_txpower.txp_offset = 0; /* Write settings on hw */ ath5k_setup_pcdac_table(ah); break; case AR5K_PWRTABLE_PWR_TO_PDADC: /* Set PDADC boundaries and fill * final PDADC table */ ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max, ee->ee_pd_gains[ee_mode]); /* Write settings on hw */ ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx); /* Set txp.offset, note that table_min * can be negative */ ah->ah_txpower.txp_offset = table_min[0]; break; default: return -EINVAL; } return 0; } /* * Per-rate tx power setting * * This is the code that sets the desired tx power (below * maximum) on hw for each rate (we also have TPC that sets * power per packet). We do that by providing an index on the * PCDAC/PDADC table we set up. */ /* * Set rate power table * * For now we only limit txpower based on maximum tx power * supported by hw (what's inside rate_info). We need to limit * this even more, based on regulatory domain etc. * * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps) * and is indexed as follows: * rates[0] - rates[7] -> OFDM rates * rates[8] - rates[14] -> CCK rates * rates[15] -> XR rates (they all have the same power) */ static void ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr, struct ath5k_rate_pcal_info *rate_info, u8 ee_mode) { unsigned int i; u16 *rates; /* max_pwr is power level we got from driver/user in 0.5dB * units, switch to 0.25dB units so we can compare */ max_pwr *= 2; max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2; /* apply rate limits */ rates = ah->ah_txpower.txp_rates_power_table; /* OFDM rates 6 to 24Mb/s */ for (i = 0; i < 5; i++) rates[i] = min(max_pwr, rate_info->target_power_6to24); /* Rest OFDM rates */ rates[5] = min(rates[0], rate_info->target_power_36); rates[6] = min(rates[0], rate_info->target_power_48); rates[7] = min(rates[0], rate_info->target_power_54); /* CCK rates */ /* 1L */ rates[8] = min(rates[0], rate_info->target_power_6to24); /* 2L */ rates[9] = min(rates[0], rate_info->target_power_36); /* 2S */ rates[10] = min(rates[0], rate_info->target_power_36); /* 5L */ rates[11] = min(rates[0], rate_info->target_power_48); /* 5S */ rates[12] = min(rates[0], rate_info->target_power_48); /* 11L */ rates[13] = min(rates[0], rate_info->target_power_54); /* 11S */ rates[14] = min(rates[0], rate_info->target_power_54); /* XR rates */ rates[15] = min(rates[0], rate_info->target_power_6to24); /* CCK rates have different peak to average ratio * so we have to tweak their power so that gainf * correction works ok. For this we use OFDM to * CCK delta from eeprom */ if ((ee_mode == AR5K_EEPROM_MODE_11G) && (ah->ah_phy_revision < AR5K_SREV_PHY_5212A)) for (i = 8; i <= 15; i++) rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta; ah->ah_txpower.txp_min_pwr = rates[7]; ah->ah_txpower.txp_max_pwr = rates[0]; ah->ah_txpower.txp_ofdm = rates[7]; } /* * Set transmition power */ int ath5k_hw_txpower(struct ath5k_hw *ah, struct net80211_channel *channel, u8 ee_mode, u8 txpower) { struct ath5k_rate_pcal_info rate_info; u8 type; int ret; if (txpower > AR5K_TUNE_MAX_TXPOWER) { DBG("ath5k: invalid tx power %d\n", txpower); return -EINVAL; } if (txpower == 0) txpower = AR5K_TUNE_DEFAULT_TXPOWER; /* Reset TX power values */ memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower)); ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER; ah->ah_txpower.txp_min_pwr = 0; ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER; /* Initialize TX power table */ switch (ah->ah_radio) { case AR5K_RF5111: type = AR5K_PWRTABLE_PWR_TO_PCDAC; break; case AR5K_RF5112: type = AR5K_PWRTABLE_LINEAR_PCDAC; break; case AR5K_RF2413: case AR5K_RF5413: case AR5K_RF2316: case AR5K_RF2317: case AR5K_RF2425: type = AR5K_PWRTABLE_PWR_TO_PDADC; break; default: return -EINVAL; } /* FIXME: Only on channel/mode change */ ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type); if (ret) return ret; /* Limit max power if we have a CTL available */ ath5k_get_max_ctl_power(ah, channel); /* FIXME: Tx power limit for this regdomain * XXX: Mac80211/CRDA will do that anyway ? */ /* FIXME: Antenna reduction stuff */ /* FIXME: Limit power on turbo modes */ /* FIXME: TPC scale reduction */ /* Get surounding channels for per-rate power table * calibration */ ath5k_get_rate_pcal_data(ah, channel, &rate_info); /* Setup rate power table */ ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode); /* Write rate power table on hw */ ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) | AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) | AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1); ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) | AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) | AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2); ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) | AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) | AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3); ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) | AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) | AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4); /* FIXME: TPC support */ if (ah->ah_txpower.txp_tpc) { ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE | AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX); ath5k_hw_reg_write(ah, AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) | AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) | AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP), AR5K_TPC); } else { ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX | AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX); } return 0; } int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 mode, u8 txpower) { struct net80211_channel *channel = ah->ah_current_channel; DBG2("ath5k: changing txpower to %d\n", txpower); return ath5k_hw_txpower(ah, channel, mode, txpower); } #undef _ATH5K_PHY