/****************************************************************************** * * Copyright(c) 2015 - 2017 Realtek Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * *****************************************************************************/ #define _RTL8822C_PHY_C_ #include /* HAL_DATA_TYPE */ #include "../hal_halmac.h" /* rtw_halmac_phy_power_switch() */ #include "rtl8822c.h" /* * Description: * Initialize Register definition offset for Radio Path A/B/C/D * The initialization value is constant and it should never be changes */ static void bb_rf_register_definition(PADAPTER adapter) { PHAL_DATA_TYPE hal = GET_HAL_DATA(adapter); /* RF Interface Sowrtware Control */ hal->PHYRegDef[RF_PATH_A].rfintfs = rFPGA0_XAB_RFInterfaceSW; hal->PHYRegDef[RF_PATH_B].rfintfs = rFPGA0_XAB_RFInterfaceSW; /* RF Interface Output (and Enable) */ hal->PHYRegDef[RF_PATH_A].rfintfo = rFPGA0_XA_RFInterfaceOE; hal->PHYRegDef[RF_PATH_B].rfintfo = rFPGA0_XB_RFInterfaceOE; /* RF Interface (Output and) Enable */ hal->PHYRegDef[RF_PATH_A].rfintfe = rFPGA0_XA_RFInterfaceOE; hal->PHYRegDef[RF_PATH_B].rfintfe = rFPGA0_XB_RFInterfaceOE; hal->PHYRegDef[RF_PATH_A].rf3wireOffset = rA_LSSIWrite_Jaguar; hal->PHYRegDef[RF_PATH_B].rf3wireOffset = rB_LSSIWrite_Jaguar; hal->PHYRegDef[RF_PATH_A].rfHSSIPara2 = rHSSIRead_Jaguar; hal->PHYRegDef[RF_PATH_B].rfHSSIPara2 = rHSSIRead_Jaguar; /* Tranceiver Readback LSSI/HSPI mode */ hal->PHYRegDef[RF_PATH_A].rfLSSIReadBack = rA_SIRead_Jaguar; hal->PHYRegDef[RF_PATH_B].rfLSSIReadBack = rB_SIRead_Jaguar; hal->PHYRegDef[RF_PATH_A].rfLSSIReadBackPi = rA_PIRead_Jaguar; hal->PHYRegDef[RF_PATH_B].rfLSSIReadBackPi = rB_PIRead_Jaguar; } /* * Description: * Initialize MAC registers * * Return: * _TRUE Success * _FALSE Fail */ u8 rtl8822c_phy_init_mac_register(PADAPTER adapter) { PHAL_DATA_TYPE hal; u8 ret = _TRUE; int res; enum hal_status status; hal = GET_HAL_DATA(adapter); ret = _FALSE; #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE res = phy_ConfigMACWithParaFile(adapter, PHY_FILE_MAC_REG); if (_SUCCESS == res) ret = _TRUE; #endif /* CONFIG_LOAD_PHY_PARA_FROM_FILE */ if (_FALSE == ret) { status = odm_config_mac_with_header_file(&hal->odmpriv); if (HAL_STATUS_SUCCESS == status) ret = _TRUE; } if (_FALSE == ret) RTW_INFO("%s: Write MAC Reg Fail!!", __FUNCTION__); return ret; } static u8 _init_bb_reg(PADAPTER Adapter) { PHAL_DATA_TYPE hal = GET_HAL_DATA(Adapter); u8 ret = _TRUE; int res; enum hal_status status; /* * 1. Read PHY_REG.TXT BB INIT!! */ ret = _FALSE; #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE res = phy_ConfigBBWithParaFile(Adapter, PHY_FILE_PHY_REG, CONFIG_BB_PHY_REG); if (_SUCCESS == res) ret = _TRUE; #endif if (_FALSE == ret) { status = odm_config_bb_with_header_file(&hal->odmpriv, CONFIG_BB_PHY_REG); if (HAL_STATUS_SUCCESS == status) ret = _TRUE; } if (_FALSE == ret) { RTW_INFO("%s: Write BB Reg Fail!!", __FUNCTION__); goto exit; } #if 0 /* No parameter with MP using currently by BB@Stanley. */ /*#ifdef CONFIG_MP_INCLUDED*/ if (Adapter->registrypriv.mp_mode == 1) { /* * 1.1 Read PHY_REG_MP.TXT BB INIT!! */ ret = _FALSE; #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE res = phy_ConfigBBWithMpParaFile(Adapter, PHY_FILE_PHY_REG_MP); if (_SUCCESS == res) ret = _TRUE; #endif if (_FALSE == ret) { status = odm_config_bb_with_header_file(&hal->odmpriv, CONFIG_BB_PHY_REG_MP); if (HAL_STATUS_SUCCESS == status) ret = _TRUE; } if (_FALSE == ret) { RTW_INFO("%s: Write BB Reg MP Fail!!", __FUNCTION__); goto exit; } } #endif /* CONFIG_MP_INCLUDED */ /* * 2. Read BB AGC table Initialization */ ret = _FALSE; #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE res = phy_ConfigBBWithParaFile(Adapter, PHY_FILE_AGC_TAB, CONFIG_BB_AGC_TAB); if (_SUCCESS == res) ret = _TRUE; #endif if (_FALSE == ret) { status = odm_config_bb_with_header_file(&hal->odmpriv, CONFIG_BB_AGC_TAB); if (HAL_STATUS_SUCCESS == status) ret = _TRUE; } if (_FALSE == ret) { RTW_INFO("%s: Write AGC Table Fail!\n", __FUNCTION__); goto exit; } exit: return ret; } static u8 init_bb_reg(PADAPTER adapter) { u8 ret = _TRUE; PHAL_DATA_TYPE hal = GET_HAL_DATA(adapter); /* * Config BB and AGC */ ret = _init_bb_reg(adapter); if (rtw_phydm_set_crystal_cap(adapter, hal->crystal_cap) == _FALSE) { RTW_ERR("Init crystal_cap failed\n"); rtw_warn_on(1); ret = _FALSE; } return ret; } static u8 _init_rf_reg(PADAPTER adapter) { u8 path; enum rf_path phydm_path; PHAL_DATA_TYPE hal = GET_HAL_DATA(adapter); struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter); #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE u8 *regfile; #endif enum hal_status status; int res; u8 ret = _TRUE; /* * Initialize IQK */ status = halrf_config_rfk_with_header_file(&hal->odmpriv, CONFIG_BB_RF_CAL_INIT); if (HAL_STATUS_SUCCESS == status) ret = _TRUE; if (_FALSE == ret) { RTW_INFO("%s: Init IQK Fail!\n", __FUNCTION__); goto exit; } /* * Initialize RF */ for (path = 0; path < hal_spec->rf_reg_path_num; path++) { /* Initialize RF from configuration file */ switch (path) { case 0: phydm_path = RF_PATH_A; #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE regfile = PHY_FILE_RADIO_A; #endif break; case 1: phydm_path = RF_PATH_B; #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE regfile = PHY_FILE_RADIO_B; #endif break; default: RTW_INFO("%s: [WARN] Unknown path=%d, skip!\n", __FUNCTION__, path); continue; } ret = _FALSE; #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE res = PHY_ConfigRFWithParaFile(adapter, regfile, phydm_path); if (_SUCCESS == res) ret = _TRUE; #endif if (_FALSE == ret) { status = odm_config_rf_with_header_file(&hal->odmpriv, CONFIG_RF_RADIO, phydm_path); if (HAL_STATUS_SUCCESS != status) goto exit; ret = _TRUE; } } /* * Configuration of Tx Power Tracking */ ret = _FALSE; #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE res = PHY_ConfigRFWithTxPwrTrackParaFile(adapter, PHY_FILE_TXPWR_TRACK); if (_SUCCESS == res) ret = _TRUE; #endif if (_FALSE == ret) { status = odm_config_rf_with_tx_pwr_track_header_file(&hal->odmpriv); if (HAL_STATUS_SUCCESS != status) { RTW_INFO("%s: Write PwrTrack Table Fail!\n", __FUNCTION__); goto exit; } ret = _TRUE; } exit: return ret; } static u8 init_rf_reg(PADAPTER adapter) { u8 ret = _TRUE; ret = _init_rf_reg(adapter); return ret; } /* * Description: * Initialize PHY(BB/RF) related functions * * Return: * _TRUE Success * _FALSE Fail */ u8 rtl8822c_phy_init(PADAPTER adapter) { struct dvobj_priv *d; struct dm_struct *phydm; int err; u8 ok = _TRUE; BOOLEAN ret; d = adapter_to_dvobj(adapter); phydm = adapter_to_phydm(adapter); bb_rf_register_definition(adapter); err = rtw_halmac_phy_power_switch(d, _TRUE); if (err) return _FALSE; #ifdef CONFIG_RTW_IOT_CCK_PD_INIT phydm_iot_patch_id_update(phydm, 0x021f0800, true); #endif ret = config_phydm_parameter_init_8822c(phydm, ODM_PRE_SETTING); if (FALSE == ret) return _FALSE; ok = init_bb_reg(adapter); if (_FALSE == ok) return _FALSE; ok = init_rf_reg(adapter); if (_FALSE == ok) return _FALSE; #ifdef CONFIG_RTW_IOT_CCK_PD_INIT phydm_iot_patch_id_update(phydm, 0x021f0800, true); #endif ret = config_phydm_parameter_init_8822c(phydm, ODM_POST_SETTING); if (FALSE == ret) return _FALSE; return _TRUE; } #ifdef CONFIG_SUPPORT_HW_WPS_PBC static void dm_CheckPbcGPIO(PADAPTER adapter) { u8 tmp1byte; u8 bPbcPressed = _FALSE; if (!adapter->registrypriv.hw_wps_pbc) return; #ifdef CONFIG_USB_HCI tmp1byte = rtw_read8(adapter, GPIO_IO_SEL); tmp1byte |= (HAL_8192C_HW_GPIO_WPS_BIT); rtw_write8(adapter, GPIO_IO_SEL, tmp1byte); /* enable GPIO[2] as output mode */ tmp1byte &= ~(HAL_8192C_HW_GPIO_WPS_BIT); rtw_write8(adapter, GPIO_IN, tmp1byte); /* reset the floating voltage level */ tmp1byte = rtw_read8(adapter, GPIO_IO_SEL); tmp1byte &= ~(HAL_8192C_HW_GPIO_WPS_BIT); rtw_write8(adapter, GPIO_IO_SEL, tmp1byte); /* enable GPIO[2] as input mode */ tmp1byte = rtw_read8(adapter, GPIO_IN); if (tmp1byte == 0xff) return; if (tmp1byte & HAL_8192C_HW_GPIO_WPS_BIT) bPbcPressed = _TRUE; #else tmp1byte = rtw_read8(adapter, GPIO_IN); if ((tmp1byte == 0xff) || adapter->init_adpt_in_progress) return; if ((tmp1byte & HAL_8192C_HW_GPIO_WPS_BIT) == 0) bPbcPressed = _TRUE; #endif if (_TRUE == bPbcPressed) { /* * Here we only set bPbcPressed to true * After trigger PBC, the variable will be set to false */ RTW_INFO("CheckPbcGPIO - PBC is pressed\n"); rtw_request_wps_pbc_event(adapter); } } #endif /* CONFIG_SUPPORT_HW_WPS_PBC */ #ifdef CONFIG_PCI_HCI /* * Description: * Perform interrupt migration dynamically to reduce CPU utilization. * * Assumption: * 1. Do not enable migration under WIFI test. */ void dm_InterruptMigration(PADAPTER adapter) { PHAL_DATA_TYPE hal = GET_HAL_DATA(adapter); struct mlme_priv *pmlmepriv = &adapter->mlmepriv; BOOLEAN bCurrentIntMt, bCurrentACIntDisable; BOOLEAN IntMtToSet = _FALSE; BOOLEAN ACIntToSet = _FALSE; /* Retrieve current interrupt migration and Tx four ACs IMR settings first. */ bCurrentIntMt = hal->bInterruptMigration; bCurrentACIntDisable = hal->bDisableTxInt; /* * Currently we use busy traffic for reference instead of RxIntOK counts to prevent non-linear Rx statistics * when interrupt migration is set before. 2010.03.05. */ if (!adapter->registrypriv.wifi_spec && (check_fwstate(pmlmepriv, WIFI_ASOC_STATE) == _TRUE) && pmlmepriv->LinkDetectInfo.bHigherBusyTraffic) { IntMtToSet = _TRUE; /* To check whether we should disable Tx interrupt or not. */ if (pmlmepriv->LinkDetectInfo.bHigherBusyRxTraffic) ACIntToSet = _TRUE; } /* Update current settings. */ if (bCurrentIntMt != IntMtToSet) { RTW_INFO("%s: Update interrupt migration(%d)\n", __FUNCTION__, IntMtToSet); if (IntMtToSet) { /* * Set interrupt migration timer and corresponging Tx/Rx counter. * timer 25ns*0xfa0=100us for 0xf packets. * 2010.03.05. */ rtw_write32(adapter, REG_INT_MIG, 0xff000fa0); /* 0x306:Rx, 0x307:Tx */ hal->bInterruptMigration = IntMtToSet; } else { /* Reset all interrupt migration settings. */ rtw_write32(adapter, REG_INT_MIG, 0); hal->bInterruptMigration = IntMtToSet; } } } #endif /* CONFIG_PCI_HCI */ /* * ============================================================ * functions * ============================================================ */ static void init_phydm_cominfo(PADAPTER adapter) { PHAL_DATA_TYPE hal; struct dm_struct *p_dm_odm; u32 support_ability = 0; hal = GET_HAL_DATA(adapter); p_dm_odm = &hal->odmpriv; Init_ODM_ComInfo(adapter); odm_cmn_info_init(p_dm_odm, ODM_CMNINFO_PACKAGE_TYPE, hal->PackageType); odm_cmn_info_init(p_dm_odm, ODM_CMNINFO_IC_TYPE, ODM_RTL8822C); RTW_INFO("%s: Fv=%d Cv=%d\n", __FUNCTION__, hal->version_id.VendorType, hal->version_id.CUTVersion); odm_cmn_info_init(p_dm_odm, ODM_CMNINFO_FAB_VER, hal->version_id.VendorType); odm_cmn_info_init(p_dm_odm, ODM_CMNINFO_CUT_VER, hal->version_id.CUTVersion); odm_cmn_info_init(p_dm_odm, ODM_CMNINFO_DIS_DPD , hal->txpwr_pg_mode == TXPWR_PG_WITH_PWR_IDX ? _TRUE : _FALSE); odm_cmn_info_init(p_dm_odm, ODM_CMNINFO_TSSI_ENABLE , hal->txpwr_pg_mode == TXPWR_PG_WITH_TSSI_OFFSET ? _TRUE : _FALSE); } void rtl8822c_phy_init_dm_priv(PADAPTER adapter) { struct dm_struct *podmpriv = adapter_to_phydm(adapter); init_phydm_cominfo(adapter); odm_init_all_timers(podmpriv); } void rtl8822c_phy_deinit_dm_priv(PADAPTER adapter) { struct dm_struct *podmpriv = adapter_to_phydm(adapter); odm_cancel_all_timers(podmpriv); } void rtl8822c_phy_init_haldm(PADAPTER adapter) { rtw_phydm_init(adapter); } static void check_rxfifo_full(PADAPTER adapter) { struct dvobj_priv *psdpriv = adapter->dvobj; struct debug_priv *pdbgpriv = &psdpriv->drv_dbg; struct registry_priv *regsty = &adapter->registrypriv; u8 val8 = 0; if (regsty->check_hw_status == 1) { /* switch counter to RX fifo */ val8 = rtw_read8(adapter, REG_RXERR_RPT_8822C + 3); rtw_write8(adapter, REG_RXERR_RPT_8822C + 3, (val8 | 0xa0)); pdbgpriv->dbg_rx_fifo_last_overflow = pdbgpriv->dbg_rx_fifo_curr_overflow; pdbgpriv->dbg_rx_fifo_curr_overflow = rtw_read16(adapter, REG_RXERR_RPT_8822C); pdbgpriv->dbg_rx_fifo_diff_overflow = pdbgpriv->dbg_rx_fifo_curr_overflow - pdbgpriv->dbg_rx_fifo_last_overflow; } } void rtl8822c_phy_haldm_watchdog(PADAPTER adapter) { BOOLEAN bFwCurrentInPSMode = _FALSE; u8 bFwPSAwake = _TRUE; struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(adapter); u8 lps_changed = _FALSE; u8 in_lps = _FALSE; PADAPTER current_lps_iface = NULL, iface = NULL; struct dvobj_priv *dvobj = adapter_to_dvobj(adapter); u8 i = 0; if (!rtw_is_hw_init_completed(adapter)) goto skip_dm; #ifdef CONFIG_LPS bFwCurrentInPSMode = adapter_to_pwrctl(adapter)->bFwCurrentInPSMode; rtw_hal_get_hwreg(adapter, HW_VAR_FWLPS_RF_ON, &bFwPSAwake); #endif /* CONFIG_LPS */ #ifdef CONFIG_P2P_PS /* * Fw is under p2p powersaving mode, driver should stop dynamic mechanism. */ if (adapter->wdinfo.p2p_ps_mode) bFwPSAwake = _FALSE; #endif /* CONFIG_P2P_PS */ if ((rtw_is_hw_init_completed(adapter)) && ((!bFwCurrentInPSMode) && bFwPSAwake)) { /* check rx fifo */ check_rxfifo_full(adapter); } #ifdef CONFIG_LPS if (pwrpriv->bLeisurePs && bFwCurrentInPSMode && pwrpriv->pwr_mode != PS_MODE_ACTIVE #ifdef CONFIG_WMMPS_STA && !rtw_is_wmmps_mode(adapter) #endif /* CONFIG_WMMPS_STA */ ) { for (i = 0; i < dvobj->iface_nums; i++) { iface = dvobj->padapters[i]; if (pwrpriv->current_lps_hw_port_id == rtw_hal_get_port(iface)) current_lps_iface = iface; } lps_changed = _TRUE; in_lps = _TRUE; LPS_Leave(current_lps_iface, LPS_CTRL_PHYDM); } #endif #ifdef CONFIG_BEAMFORMING #ifdef RTW_BEAMFORMING_VERSION_2 if (check_fwstate(&adapter->mlmepriv, WIFI_STATION_STATE) && check_fwstate(&adapter->mlmepriv, WIFI_ASOC_STATE)) rtw_hal_beamforming_config_csirate(adapter); #endif #endif #ifdef CONFIG_DISABLE_ODM goto skip_dm; #endif rtw_phydm_watchdog(adapter, in_lps); skip_dm: #ifdef CONFIG_LPS if (lps_changed) LPS_Enter(current_lps_iface, LPS_CTRL_PHYDM); #endif /* * Check GPIO to determine current RF on/off and Pbc status. * Check Hardware Radio ON/OFF or not */ #ifdef CONFIG_SUPPORT_HW_WPS_PBC dm_CheckPbcGPIO(adapter); #else /* !CONFIG_SUPPORT_HW_WPS_PBC */ return; #endif /* !CONFIG_SUPPORT_HW_WPS_PBC */ } static u32 phy_calculatebitshift(u32 mask) { u32 i; for (i = 0; i <= 31; i++) if (mask & BIT(i)) break; return i; } u32 rtl8822c_read_bb_reg(PADAPTER adapter, u32 addr, u32 mask) { u32 val = 0, val_org, shift; #if (DISABLE_BB_RF == 1) return 0; #endif val_org = rtw_read32(adapter, addr); shift = phy_calculatebitshift(mask); val = (val_org & mask) >> shift; return val; } void rtl8822c_write_bb_reg(PADAPTER adapter, u32 addr, u32 mask, u32 val) { u32 val_org, shift; #if (DISABLE_BB_RF == 1) return; #endif if (mask != 0xFFFFFFFF) { /* not "double word" write */ val_org = rtw_read32(adapter, addr); shift = phy_calculatebitshift(mask); val = ((val_org & (~mask)) | ((val << shift) & mask)); } rtw_write32(adapter, addr, val); } u32 rtl8822c_read_rf_reg(PADAPTER adapter, enum rf_path path, u32 addr, u32 mask) { struct dm_struct *phydm = adapter_to_phydm(adapter); u32 val; val = config_phydm_read_rf_reg_8822c(phydm, path, addr, mask); if (!config_phydm_read_rf_check_8822c(val)) RTW_INFO(FUNC_ADPT_FMT ": read RF reg path=%d addr=0x%x mask=0x%x FAIL!\n", FUNC_ADPT_ARG(adapter), path, addr, mask); return val; } void rtl8822c_write_rf_reg(PADAPTER adapter, enum rf_path path, u32 addr, u32 mask, u32 val) { struct dm_struct *phydm = adapter_to_phydm(adapter); u8 ret; ret = config_phydm_write_rf_reg_8822c(phydm, path, addr, mask, val); if (_FALSE == ret) RTW_INFO(FUNC_ADPT_FMT ": write RF reg path=%d addr=0x%x mask=0x%x val=0x%x FAIL!\n", FUNC_ADPT_ARG(adapter), path, addr, mask, val); } static void set_tx_power_level_by_path(PADAPTER adapter, u8 channel, u8 path) { PHAL_DATA_TYPE hal = GET_HAL_DATA(adapter); u8 under_survey_ch = phy_check_under_survey_ch(adapter); u8 under_24g = (hal->current_band_type == BAND_ON_2_4G); if (under_24g) phy_set_tx_power_index_by_rate_section(adapter, path, channel, CCK); phy_set_tx_power_index_by_rate_section(adapter, path, channel, OFDM); if (!under_survey_ch) { phy_set_tx_power_index_by_rate_section(adapter, path, channel, HT_MCS0_MCS7); phy_set_tx_power_index_by_rate_section(adapter, path, channel, HT_MCS8_MCS15); phy_set_tx_power_index_by_rate_section(adapter, path, channel, VHT_1SSMCS0_1SSMCS9); phy_set_tx_power_index_by_rate_section(adapter, path, channel, VHT_2SSMCS0_2SSMCS9); } } void rtl8822c_set_tx_power_level(PADAPTER adapter, u8 channel) { struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter); u8 path; for (path = RF_PATH_A; path < hal_spec->rf_reg_path_num; ++path) { /* * can't bypass unused path * because phydm need all path values to calculate min diff */ set_tx_power_level_by_path(adapter, channel, path); } } void rtl8822c_set_txpwr_done(_adapter *adapter) { HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter); struct dm_struct *phydm = adapter_to_phydm(adapter); config_phydm_set_txagc_to_hw_8822c(phydm); #ifdef CONFIG_TXPWR_PG_WITH_TSSI_OFFSET if (hal_data->txpwr_pg_mode == TXPWR_PG_WITH_TSSI_OFFSET #ifdef CONFIG_MP_INCLUDED && !rtw_mp_mode_check(adapter) #endif ) { halrf_calculate_tssi_codeword(phydm); halrf_set_tssi_codeword(phydm); } #endif } u8 rtl8822c_get_dis_dpd_by_rate_diff(PADAPTER adapter, u8 rate) { struct dm_struct *phydm = adapter_to_phydm(adapter); u16 dis_dpd_rate; u8 dis_dpd_rate_diff = 0; dis_dpd_rate = phydm_get_dis_dpd_by_rate_8822c(phydm); switch (rate) { case MGN_6M: ((dis_dpd_rate & BIT(0)) == BIT(0))?(dis_dpd_rate_diff = 3):(dis_dpd_rate_diff = 0); break; case MGN_9M: ((dis_dpd_rate & BIT(1)) == BIT(1))?(dis_dpd_rate_diff = 3):(dis_dpd_rate_diff = 0); break; case MGN_MCS0: ((dis_dpd_rate & BIT(2)) == BIT(2))?(dis_dpd_rate_diff = 3):(dis_dpd_rate_diff = 0); break; case MGN_MCS1: ((dis_dpd_rate & BIT(3)) == BIT(3))?(dis_dpd_rate_diff = 3):(dis_dpd_rate_diff = 0); break; case MGN_MCS8: ((dis_dpd_rate & BIT(4)) == BIT(4))?(dis_dpd_rate_diff = 3):(dis_dpd_rate_diff = 0); break; case MGN_MCS9: ((dis_dpd_rate & BIT(5)) == BIT(5))?(dis_dpd_rate_diff = 3):(dis_dpd_rate_diff = 0); break; case MGN_VHT1SS_MCS0: ((dis_dpd_rate & BIT(6)) == BIT(6))?(dis_dpd_rate_diff = 3):(dis_dpd_rate_diff = 0); break; case MGN_VHT1SS_MCS1: ((dis_dpd_rate & BIT(7)) == BIT(7))?(dis_dpd_rate_diff = 3):(dis_dpd_rate_diff = 0); break; case MGN_VHT2SS_MCS0: ((dis_dpd_rate & BIT(8)) == BIT(8))?(dis_dpd_rate_diff = 3):(dis_dpd_rate_diff = 0); break; case MGN_VHT2SS_MCS1: ((dis_dpd_rate & BIT(9)) == BIT(9))?(dis_dpd_rate_diff = 3):(dis_dpd_rate_diff = 0); break; default: dis_dpd_rate_diff = 0; break; } return dis_dpd_rate_diff; } /* * Parameters: * padatper * powerindex power index for rate * rfpath Antenna(RF) path, type "enum rf_path" * rate data rate, type "enum MGN_RATE" */ void rtl8822c_set_tx_power_index(PADAPTER adapter, u32 powerindex, enum rf_path rfpath, u8 rate) { HAL_DATA_TYPE *hal = GET_HAL_DATA(adapter); struct dm_struct *phydm = adapter_to_phydm(adapter); u8 shift = 0; boolean write_ret; if (!IS_1T_RATE(rate) && !IS_2T_RATE(rate)) { RTW_ERR(FUNC_ADPT_FMT" invalid rate(%s)\n", FUNC_ADPT_ARG(adapter), MGN_RATE_STR(rate)); rtw_warn_on(1); goto exit; } rate = MRateToHwRate(rate); /* * For 8822C, phydm api use 4 bytes txagc value * driver must combine every four 1 byte to one 4 byte and send to phydm api */ shift = rate % 4; hal->txagc_set_buf |= ((powerindex & 0xff) << (shift * 8)); if (shift != 3) goto exit; rate = rate & 0xFC; write_ret = config_phydm_write_txagc_8822c(phydm, hal->txagc_set_buf, rfpath, rate); if (write_ret == true && !DBG_TX_POWER_IDX) goto clear_buf; RTW_INFO(FUNC_ADPT_FMT" (index:0x%08x, %c, rate:%s(0x%02x), disable api:%d) %s\n" , FUNC_ADPT_ARG(adapter), hal->txagc_set_buf, rf_path_char(rfpath) , HDATA_RATE(rate), rate, phydm->is_disable_phy_api , write_ret == true ? "OK" : "FAIL"); rtw_warn_on(write_ret != true); clear_buf: hal->txagc_set_buf = 0; exit: return; } /* * Description: * Check need to switch band or not * Parameters: * channelToSW channel wiii be switch to * Return: * _TRUE need to switch band * _FALSE not need to switch band */ static u8 need_switch_band(PADAPTER adapter, u8 channelToSW) { u8 u1tmp = 0; u8 ret_value = _TRUE; u8 Band = BAND_ON_5G, BandToSW = BAND_ON_5G; PHAL_DATA_TYPE hal = GET_HAL_DATA(adapter); Band = hal->current_band_type; /* Use current swich channel to judge Band Type and switch Band if need */ if (channelToSW > 14) BandToSW = BAND_ON_5G; else BandToSW = BAND_ON_2_4G; if (BandToSW != Band) { /* record current band type for other hal use */ hal->current_band_type = (BAND_TYPE)BandToSW; ret_value = _TRUE; } else ret_value = _FALSE; return ret_value; } static u8 get_pri_ch_id(PADAPTER adapter) { u8 pri_ch_idx = 0; PHAL_DATA_TYPE hal = GET_HAL_DATA(adapter); if (hal->current_channel_bw == CHANNEL_WIDTH_80) { /* primary channel is at lower subband of 80MHz & 40MHz */ if ((hal->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (hal->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER)) pri_ch_idx = VHT_DATA_SC_20_LOWEST_OF_80MHZ; /* primary channel is at lower subband of 80MHz & upper subband of 40MHz */ else if ((hal->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (hal->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER)) pri_ch_idx = VHT_DATA_SC_20_LOWER_OF_80MHZ; /* primary channel is at upper subband of 80MHz & lower subband of 40MHz */ else if ((hal->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (hal->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER)) pri_ch_idx = VHT_DATA_SC_20_UPPER_OF_80MHZ; /* primary channel is at upper subband of 80MHz & upper subband of 40MHz */ else if ((hal->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (hal->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER)) pri_ch_idx = VHT_DATA_SC_20_UPPERST_OF_80MHZ; else { if (hal->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) pri_ch_idx = VHT_DATA_SC_40_LOWER_OF_80MHZ; else if (hal->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) pri_ch_idx = VHT_DATA_SC_40_UPPER_OF_80MHZ; else RTW_INFO("SCMapping: DONOT CARE Mode Setting\n"); } } else if (hal->current_channel_bw == CHANNEL_WIDTH_40) { /* primary channel is at upper subband of 40MHz */ if (hal->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) pri_ch_idx = VHT_DATA_SC_20_UPPER_OF_80MHZ; /* primary channel is at lower subband of 40MHz */ else if (hal->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) pri_ch_idx = VHT_DATA_SC_20_LOWER_OF_80MHZ; else RTW_INFO("SCMapping: DONOT CARE Mode Setting\n"); } return pri_ch_idx; } static void mac_switch_bandwidth(PADAPTER adapter, u8 pri_ch_idx) { u8 channel = 0, bw = 0; PHAL_DATA_TYPE hal = GET_HAL_DATA(adapter); int err; channel = hal->current_channel; bw = hal->current_channel_bw; #ifdef CONFIG_NARROWBAND_SUPPORTING if (adapter->registrypriv.rtw_nb_config == RTW_NB_CONFIG_WIDTH_10) err = rtw_halmac_set_bandwidth(adapter_to_dvobj(adapter), channel, pri_ch_idx, HALMAC_BW_10); else if (adapter->registrypriv.rtw_nb_config == RTW_NB_CONFIG_WIDTH_5) err = rtw_halmac_set_bandwidth(adapter_to_dvobj(adapter), channel, pri_ch_idx, HALMAC_BW_5); else #endif err = rtw_halmac_set_bandwidth(adapter_to_dvobj(adapter), channel, pri_ch_idx, bw); if (err) { RTW_INFO(FUNC_ADPT_FMT ": (channel=%d, pri_ch_idx=%d, bw=%d) fail\n", FUNC_ADPT_ARG(adapter), channel, pri_ch_idx, bw); } } static void switch_chnl_and_set_bw_by_drv(PADAPTER adapter, u8 switch_band) { PHAL_DATA_TYPE hal = GET_HAL_DATA(adapter); struct dm_struct *p_dm_odm = &hal->odmpriv; u8 center_ch = 0, ret = 0; /* set channel & Bandwidth register */ /* 1. set switch band register if need to switch band */ if (switch_band) { /* hal->current_channel is center channel of pmlmeext->cur_channel(primary channel) */ ret = config_phydm_switch_band_8822c(p_dm_odm, hal->current_channel); if (!ret) { RTW_INFO("%s: config_phydm_switch_band_8822c fail\n", __FUNCTION__); rtw_warn_on(1); return; } } /* 2. set channel register */ if (hal->bSwChnl) { ret = config_phydm_switch_channel_8822c(p_dm_odm, hal->current_channel); hal->bSwChnl = _FALSE; if (!ret) { RTW_INFO("%s: config_phydm_switch_channel_8822c fail\n", __FUNCTION__); rtw_warn_on(1); return; } } /* 3. set Bandwidth register */ if (hal->bSetChnlBW) { /* get primary channel index */ u8 pri_ch_idx = get_pri_ch_id(adapter); /* 3.1 set MAC register */ mac_switch_bandwidth(adapter, pri_ch_idx); /* 3.2 set BB/RF registet */ #ifdef CONFIG_NARROWBAND_SUPPORTING if (adapter->registrypriv.rtw_nb_config == RTW_NB_CONFIG_WIDTH_10) { rtw_write8(adapter, REG_CCK_CHECK_8822C, (rtw_read8(adapter, REG_CCK_CHECK_8822C) | BIT(7))); ret = config_phydm_switch_bandwidth_8822c(p_dm_odm, pri_ch_idx, CHANNEL_WIDTH_10); } else if (adapter->registrypriv.rtw_nb_config == RTW_NB_CONFIG_WIDTH_5) { rtw_write8(adapter, REG_CCK_CHECK_8822C, (rtw_read8(adapter, REG_CCK_CHECK_8822C) | BIT(7))); ret = config_phydm_switch_bandwidth_8822c(p_dm_odm, pri_ch_idx, CHANNEL_WIDTH_5); } else #endif ret = config_phydm_switch_bandwidth_8822c(p_dm_odm, pri_ch_idx, hal->current_channel_bw); hal->bSetChnlBW = _FALSE; if (!ret) { RTW_INFO("%s: config_phydm_switch_bandwidth_8822c fail\n", __FUNCTION__); rtw_warn_on(1); return; } } } #ifdef RTW_CHANNEL_SWITCH_OFFLOAD static void switch_chnl_and_set_bw_by_fw(PADAPTER adapter, u8 switch_band) { PHAL_DATA_TYPE hal = GET_HAL_DATA(adapter); if (switch_band ||hal->bSwChnl || hal->bSetChnlBW) { rtw_hal_switch_chnl_and_set_bw_offload(adapter, hal->current_channel, get_pri_ch_id(adapter), hal->current_channel_bw); hal->bSwChnl = _FALSE; hal->bSetChnlBW = _FALSE; } } #endif /* * Description: * Set channel & bandwidth & offset */ void rtl8822c_switch_chnl_and_set_bw(PADAPTER adapter) { PHAL_DATA_TYPE hal = GET_HAL_DATA(adapter); struct dm_struct *p_dm_odm = &hal->odmpriv; u8 center_ch = 0, ret = 0, switch_band = _FALSE; if (adapter->bNotifyChannelChange) { RTW_INFO("[%s] bSwChnl=%d, ch=%d, bSetChnlBW=%d, bw=%d\n", __FUNCTION__, hal->bSwChnl, hal->current_channel, hal->bSetChnlBW, hal->current_channel_bw); } if (RTW_CANNOT_RUN(adapter)) { hal->bSwChnlAndSetBWInProgress = _FALSE; return; } switch_band = need_switch_band(adapter, hal->current_channel); /* config channel, bw, offset setting */ #ifdef RTW_CHANNEL_SWITCH_OFFLOAD if (hal->ch_switch_offload) { #ifdef RTW_REDUCE_SCAN_SWITCH_CH_TIME struct dvobj_priv *dvobj = adapter_to_dvobj(adapter); _adapter *iface; struct mlme_ext_priv *mlmeext; u8 drv_switch = _TRUE; int i; for (i = 0; i < dvobj->iface_nums; i++) { iface = dvobj->padapters[i]; mlmeext = &iface->mlmeextpriv; /* check scan state */ if (mlmeext_scan_state(mlmeext) != SCAN_DISABLE && mlmeext_scan_state(mlmeext) != SCAN_COMPLETE && mlmeext_scan_state(mlmeext) != SCAN_BACKING_OP) drv_switch = _FALSE; } #else u8 drv_switch = _FALSE; #endif if (drv_switch == _TRUE) switch_chnl_and_set_bw_by_drv(adapter, switch_band); else switch_chnl_and_set_bw_by_fw(adapter, switch_band); } else { switch_chnl_and_set_bw_by_drv(adapter, switch_band); } #else switch_chnl_and_set_bw_by_drv(adapter, switch_band); #endif /* RTW_CHANNEL_SWITCH_OFFLOAD */ /* config coex setting */ if (switch_band) { #ifdef CONFIG_BT_COEXIST if (hal->EEPROMBluetoothCoexist) { struct mlme_ext_priv *mlmeext; /* switch band under site survey or not, must notify to BT COEX */ mlmeext = &adapter->mlmeextpriv; if (mlmeext_scan_state(mlmeext) != SCAN_DISABLE) rtw_btcoex_switchband_notify(_TRUE, hal->current_band_type); else rtw_btcoex_switchband_notify(_FALSE, hal->current_band_type); } else rtw_btcoex_wifionly_switchband_notify(adapter); #else /* !CONFIG_BT_COEXIST */ rtw_btcoex_wifionly_switchband_notify(adapter); #endif /* CONFIG_BT_COEXIST */ } phydm_config_kfree(p_dm_odm, hal->current_channel); /* TX Power Setting */ odm_clear_txpowertracking_state(p_dm_odm); rtw_hal_set_tx_power_level(adapter, hal->current_channel); /* IQK */ if ((hal->bNeedIQK == _TRUE) || (adapter->registrypriv.mp_mode == 1)) { /*phy_iq_calibrate_8822c(p_dm_odm, _FALSE);*/ rtw_phydm_iqk_trigger(adapter); hal->bNeedIQK = _FALSE; } } /* * Description: * Store channel setting to hal date * Parameters: * bSwitchChannel swith channel or not * bSetBandWidth set band or not * ChannelNum center channel * ChnlWidth bandwidth * ChnlOffsetOf40MHz channel offset for 40MHz Bandwidth * ChnlOffsetOf80MHz channel offset for 80MHz Bandwidth * CenterFrequencyIndex1 center channel index */ void rtl8822c_handle_sw_chnl_and_set_bw( PADAPTER Adapter, u8 bSwitchChannel, u8 bSetBandWidth, u8 ChannelNum, enum channel_width ChnlWidth, u8 ChnlOffsetOf40MHz, u8 ChnlOffsetOf80MHz, u8 CenterFrequencyIndex1) { PADAPTER pDefAdapter = GetDefaultAdapter(Adapter); PHAL_DATA_TYPE hal = GET_HAL_DATA(pDefAdapter); u8 tmpChannel = hal->current_channel; enum channel_width tmpBW = hal->current_channel_bw; u8 tmpnCur40MhzPrimeSC = hal->nCur40MhzPrimeSC; u8 tmpnCur80MhzPrimeSC = hal->nCur80MhzPrimeSC; u8 tmpCenterFrequencyIndex1 = hal->CurrentCenterFrequencyIndex1; struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv; /* check swchnl or setbw */ if (!bSwitchChannel && !bSetBandWidth) { RTW_INFO("%s: not switch channel and not set bandwidth\n", __FUNCTION__); return; } /* skip switch channel operation for current channel & ChannelNum(will be switch) are the same */ if (bSwitchChannel) { if (hal->current_channel != ChannelNum) { if (HAL_IsLegalChannel(Adapter, ChannelNum)) hal->bSwChnl = _TRUE; else return; } } /* check set BandWidth */ if (bSetBandWidth) { /* initial channel bw setting */ if (hal->bChnlBWInitialized == _FALSE) { hal->bChnlBWInitialized = _TRUE; hal->bSetChnlBW = _TRUE; } else if ((hal->current_channel_bw != ChnlWidth) || /* check whether need set band or not */ (hal->nCur40MhzPrimeSC != ChnlOffsetOf40MHz) || (hal->nCur80MhzPrimeSC != ChnlOffsetOf80MHz) || (hal->CurrentCenterFrequencyIndex1 != CenterFrequencyIndex1)) hal->bSetChnlBW = _TRUE; } /* return if not need set bandwidth nor channel after check*/ if (!hal->bSetChnlBW && !hal->bSwChnl && hal->bNeedIQK != _TRUE) return; /* set channel number to hal data */ if (hal->bSwChnl) { hal->current_channel = ChannelNum; hal->CurrentCenterFrequencyIndex1 = ChannelNum; } /* set bandwidth info to hal data */ if (hal->bSetChnlBW) { hal->current_channel_bw = ChnlWidth; hal->nCur40MhzPrimeSC = ChnlOffsetOf40MHz; hal->nCur80MhzPrimeSC = ChnlOffsetOf80MHz; hal->CurrentCenterFrequencyIndex1 = CenterFrequencyIndex1; } /* switch channel & bandwidth */ if (!RTW_CANNOT_RUN(Adapter)) rtl8822c_switch_chnl_and_set_bw(Adapter); else { if (hal->bSwChnl) { hal->current_channel = tmpChannel; hal->CurrentCenterFrequencyIndex1 = tmpChannel; } if (hal->bSetChnlBW) { hal->current_channel_bw = tmpBW; hal->nCur40MhzPrimeSC = tmpnCur40MhzPrimeSC; hal->nCur80MhzPrimeSC = tmpnCur80MhzPrimeSC; hal->CurrentCenterFrequencyIndex1 = tmpCenterFrequencyIndex1; } } } /* * Description: * Change channel, bandwidth & offset * Parameters: * center_ch center channel * bw bandwidth * offset40 channel offset for 40MHz Bandwidth * offset80 channel offset for 80MHz Bandwidth */ void rtl8822c_set_channel_bw(PADAPTER adapter, u8 center_ch, enum channel_width bw, u8 offset40, u8 offset80) { rtl8822c_handle_sw_chnl_and_set_bw(adapter, _TRUE, _TRUE, center_ch, bw, offset40, offset80, center_ch); } void rtl8822c_notch_filter_switch(PADAPTER adapter, bool enable) { if (enable) RTW_INFO("%s: Enable notch filter\n", __FUNCTION__); else RTW_INFO("%s: Disable notch filter\n", __FUNCTION__); } #ifdef CONFIG_MP_INCLUDED /* * Description: * Config RF path * * Parameters: * adapter pointer of struct _ADAPTER */ void rtl8822c_mp_config_rfpath(PADAPTER adapter) { PHAL_DATA_TYPE hal; PMPT_CONTEXT mpt; ANTENNA_PATH anttx, antrx; enum bb_path bb_tx, bb_rx; hal = GET_HAL_DATA(adapter); mpt = &adapter->mppriv.mpt_ctx; anttx = hal->antenna_tx_path; antrx = hal->AntennaRxPath; hal->antenna_test = _TRUE; RTW_INFO("+Config RF Path, tx=0x%x rx=0x%x\n", anttx, antrx); switch (anttx) { case ANTENNA_A: mpt->mpt_rf_path = RF_PATH_A; bb_tx = BB_PATH_A; break; case ANTENNA_B: mpt->mpt_rf_path = RF_PATH_B; bb_tx = BB_PATH_B; break; case ANTENNA_AB: default: mpt->mpt_rf_path = RF_PATH_AB; bb_tx = BB_PATH_A | BB_PATH_B; break; } switch (antrx) { case ANTENNA_A: bb_rx = BB_PATH_A; break; case ANTENNA_B: bb_rx = BB_PATH_B; break; case ANTENNA_AB: default: bb_rx = BB_PATH_A | BB_PATH_B; break; } phydm_api_trx_mode(GET_PDM_ODM(adapter), bb_tx, bb_rx, bb_tx); RTW_INFO("-Config RF Path Finish\n"); } #endif /* CONFIG_MP_INCLUDED */ #ifdef CONFIG_BEAMFORMING /* REG_TXBF_CTRL (Offset 0x42C) */ #define BITS_R_TXBF1_AID_8822C (BIT_MASK_R_TXBF1_AID_8822C << BIT_SHIFT_R_TXBF1_AID_8822C) #define BIT_CLEAR_R_TXBF1_AID_8822C(x) ((x) & (~BITS_R_TXBF1_AID_8822C)) #define BIT_SET_R_TXBF1_AID_8822C(x, v) (BIT_CLEAR_R_TXBF1_AID_8822C(x) | BIT_R_TXBF1_AID_8822C(v)) #define BITS_R_TXBF0_AID_8822C (BIT_MASK_R_TXBF0_AID_8822C << BIT_SHIFT_R_TXBF0_AID_8822C) #define BIT_CLEAR_R_TXBF0_AID_8822C(x) ((x) & (~BITS_R_TXBF0_AID_8822C)) #define BIT_SET_R_TXBF0_AID_8822C(x, v) (BIT_CLEAR_R_TXBF0_AID_8822C(x) | BIT_R_TXBF0_AID_8822C(v)) /* REG_NDPA_OPT_CTRL (Offset 0x45F) */ #define BITS_R_NDPA_BW_8822C (BIT_MASK_R_NDPA_BW_8822C << BIT_SHIFT_R_NDPA_BW_8822C) #define BIT_CLEAR_R_NDPA_BW_8822C(x) ((x) & (~BITS_R_NDPA_BW_8822C)) #define BIT_SET_R_NDPA_BW_8822C(x, v) (BIT_CLEAR_R_NDPA_BW_8822C(x) | BIT_R_NDPA_BW_8822C(v)) /* REG_ASSOCIATED_BFMEE_SEL (Offset 0x714) */ #define BITS_AID1_8822C (BIT_MASK_AID1_8822C << BIT_SHIFT_AID1_8822C) #define BIT_CLEAR_AID1_8822C(x) ((x) & (~BITS_AID1_8822C)) #define BIT_SET_AID1_8822C(x, v) (BIT_CLEAR_AID1_8822C(x) | BIT_AID1_8822C(v)) #define BITS_AID0_8822C (BIT_MASK_AID0_8822C << BIT_SHIFT_AID0_8822C) #define BIT_CLEAR_AID0_8822C(x) ((x) & (~BITS_AID0_8822C)) #define BIT_SET_AID0_8822C(x, v) (BIT_CLEAR_AID0_8822C(x) | BIT_AID0_8822C(v)) /* REG_SND_PTCL_CTRL (Offset 0x718) */ #define BIT_VHTNDP_RPTPOLL_CSI_STR_OFFSET_SEL_8822C BIT(15) /* REG_MU_TX_CTL (Offset 0x14C0) */ #define BIT_R_MU_P1_WAIT_STATE_EN_8822C BIT(16) #define BIT_SHIFT_R_MU_RL_8822C 12 /* #define BIT_MASK_R_MU_RL_8822C 0xF */ #define BITS_R_MU_RL_8822C (BIT_MASK_R_MU_RL_8822C << BIT_SHIFT_R_MU_RL_8822C) #define BIT_R_MU_RL_8822C(x) (((x) & BIT_MASK_R_MU_RL_8822C) << BIT_SHIFT_R_MU_RL_8822C) #define BIT_CLEAR_R_MU_RL_8822C(x) ((x) & (~BITS_R_MU_RL_8822C)) #define BIT_SET_R_MU_RL_8822C(x, v) (BIT_CLEAR_R_MU_RL_8822C(x) | BIT_R_MU_RL_8822C(v)) #define BIT_SHIFT_R_MU_TAB_SEL_8822C 8 #define BIT_MASK_R_MU_TAB_SEL_8822C 0x7 #define BITS_R_MU_TAB_SEL_8822C (BIT_MASK_R_MU_TAB_SEL_8822C << BIT_SHIFT_R_MU_TAB_SEL_8822C) #define BIT_R_MU_TAB_SEL_8822C(x) (((x) & BIT_MASK_R_MU_TAB_SEL_8822C) << BIT_SHIFT_R_MU_TAB_SEL_8822C) #define BIT_CLEAR_R_MU_TAB_SEL_8822C(x) ((x) & (~BITS_R_MU_TAB_SEL_8822C)) #define BIT_SET_R_MU_TAB_SEL_8822C(x, v) (BIT_CLEAR_R_MU_TAB_SEL_8822C(x) | BIT_R_MU_TAB_SEL_8822C(v)) #define BIT_R_EN_MU_MIMO_8822C BIT(7) #define BITS_R_MU_TABLE_VALID_8822C (BIT_MASK_R_MU_TABLE_VALID_8822C << BIT_SHIFT_R_MU_TABLE_VALID_8822C) #define BIT_CLEAR_R_MU_TABLE_VALID_8822C(x) ((x) & (~BITS_R_MU_TABLE_VALID_8822C)) #define BIT_SET_R_MU_TABLE_VALID_8822C(x, v) (BIT_CLEAR_R_MU_TABLE_VALID_8822C(x) | BIT_R_MU_TABLE_VALID_8822C(v)) /* REG_WMAC_MU_BF_CTL (Offset 0x1680) */ #define BITS_WMAC_MU_BFRPTSEG_SEL_8822C (BIT_MASK_WMAC_MU_BFRPTSEG_SEL_8822C << BIT_SHIFT_WMAC_MU_BFRPTSEG_SEL_8822C) #define BIT_CLEAR_WMAC_MU_BFRPTSEG_SEL_8822C(x) ((x) & (~BITS_WMAC_MU_BFRPTSEG_SEL_8822C)) #define BIT_SET_WMAC_MU_BFRPTSEG_SEL_8822C(x, v) (BIT_CLEAR_WMAC_MU_BFRPTSEG_SEL_8822C(x) | BIT_WMAC_MU_BFRPTSEG_SEL_8822C(v)) #define BITS_WMAC_MU_BF_MYAID_8822C (BIT_MASK_WMAC_MU_BF_MYAID_8822C << BIT_SHIFT_WMAC_MU_BF_MYAID_8822C) #define BIT_CLEAR_WMAC_MU_BF_MYAID_8822C(x) ((x) & (~BITS_WMAC_MU_BF_MYAID_8822C)) #define BIT_SET_WMAC_MU_BF_MYAID_8822C(x, v) (BIT_CLEAR_WMAC_MU_BF_MYAID_8822C(x) | BIT_WMAC_MU_BF_MYAID_8822C(v)) /* REG_WMAC_ASSOCIATED_MU_BFMEE7 (Offset 0x168E) */ #define BIT_STATUS_BFEE7_8822C BIT(10) enum _HW_CFG_SOUNDING_TYPE { HW_CFG_SOUNDING_TYPE_SOUNDDOWN, HW_CFG_SOUNDING_TYPE_LEAVE, HW_CFG_SOUNDING_TYPE_RESET, HW_CFG_SOUNDING_TYPE_MAX }; static u8 _bf_get_nrx(PADAPTER adapter) { u8 nrx = 0; nrx = GET_HAL_RX_NSS(adapter); return (nrx - 1); } static void _sounding_reset_all(PADAPTER adapter) { struct beamforming_info *info; struct beamformee_entry *bfee; u8 i; u32 mu_tx_ctl; info = GET_BEAMFORM_INFO(adapter); rtw_write8(adapter, REG_TXBF_CTRL_8822C+3, 0); /* Clear all MU entry table */ for (i = 0; i < MAX_BEAMFORMEE_ENTRY_NUM; i++) { bfee = &info->bfee_entry[i]; for (i = 0; i < 8; i++) bfee->gid_valid[i] = 0; } mu_tx_ctl = rtw_read32(adapter, REG_MU_TX_CTL_8822C); for (i = 0; i < 6; i++) { mu_tx_ctl = BIT_SET_R_MU_TAB_SEL_8822C(mu_tx_ctl, i); rtw_write32(adapter, REG_MU_TX_CTL_8822C, mu_tx_ctl); /* set MU STA gid valid table */ rtw_write32(adapter, REG_MU_STA_GID_VLD_8822C, 0); } /* Disable TxMU PPDU */ mu_tx_ctl &= ~BIT_R_EN_MU_MIMO_8822C; rtw_write32(adapter, REG_MU_TX_CTL_8822C, mu_tx_ctl); } static void _sounding_config_su(PADAPTER adapter, struct beamformee_entry *bfee, enum _HW_CFG_SOUNDING_TYPE cfg_type) { u32 txbf_ctrl, new_ctrl; txbf_ctrl = rtw_read32(adapter, REG_TXBF_CTRL_8822C); new_ctrl = txbf_ctrl; /* Clear TxBF status at 20M/40/80M first */ switch (bfee->su_reg_index) { case 0: new_ctrl &= ~(BIT_R_TXBF0_20M_8822C|BIT_R_TXBF0_40M_8822C|BIT_R_TXBF0_80M_8822C); break; case 1: new_ctrl &= ~(BIT_R_TXBF1_20M_8822C|BIT_R_TXBF1_40M_8822C|BIT_R_TXBF1_80M_8822C); break; } switch (cfg_type) { case HW_CFG_SOUNDING_TYPE_SOUNDDOWN: switch (bfee->sound_bw) { default: case CHANNEL_WIDTH_80: if (0 == bfee->su_reg_index) new_ctrl |= BIT_R_TXBF0_80M_8822C; else if (1 == bfee->su_reg_index) new_ctrl |= BIT_R_TXBF1_80M_8822C; /* fall through */ case CHANNEL_WIDTH_40: if (0 == bfee->su_reg_index) new_ctrl |= BIT_R_TXBF0_40M_8822C; else if (1 == bfee->su_reg_index) new_ctrl |= BIT_R_TXBF1_40M_8822C; /* fall through */ case CHANNEL_WIDTH_20: if (0 == bfee->su_reg_index) new_ctrl |= BIT_R_TXBF0_20M_8822C; else if (1 == bfee->su_reg_index) new_ctrl |= BIT_R_TXBF1_20M_8822C; break; } break; default: RTW_INFO("%s: SU cfg_type=%d, don't apply Vmatrix!\n", __FUNCTION__, cfg_type); break; } if (new_ctrl != txbf_ctrl) rtw_write32(adapter, REG_TXBF_CTRL_8822C, new_ctrl); } static void _sounding_config_mu(PADAPTER adapter, struct beamformee_entry *bfee, enum _HW_CFG_SOUNDING_TYPE cfg_type) { struct beamforming_info *info; u8 is_bitmap_ready = _FALSE; u32 mu_tx_ctl; u16 bitmap; u8 id1, id0, gid; u32 gid_valid[6] = {0}; u8 i, j; u32 val32; info = GET_BEAMFORM_INFO(adapter); switch (cfg_type) { case HW_CFG_SOUNDING_TYPE_LEAVE: RTW_INFO("%s: MU HW_CFG_SOUNDING_TYPE_LEAVE\n", __FUNCTION__); /* Clear the entry table */ mu_tx_ctl = rtw_read32(adapter, REG_MU_TX_CTL_8822C); if (TEST_FLAG(bfee->cap, BEAMFORMEE_CAP_VHT_MU)) { for (i = 0; i < 8; i++) bfee->gid_valid[i] = 0; mu_tx_ctl = BIT_SET_R_MU_TAB_SEL_8822C(mu_tx_ctl, bfee->mu_reg_index); rtw_write32(adapter, REG_MU_TX_CTL_8822C, mu_tx_ctl); /* Set MU STA gid valid table */ rtw_write32(adapter, REG_MU_STA_GID_VLD_8822C, 0); } else { RTW_ERR("%s: ERROR! It is not an MU BFee entry!!\n", __FUNCTION__); } if (info->beamformee_su_cnt == 0) { /* Disable TxMU PPDU */ mu_tx_ctl &= ~BIT_R_EN_MU_MIMO_8822C; rtw_write32(adapter, REG_MU_TX_CTL_8822C, mu_tx_ctl); } break; case HW_CFG_SOUNDING_TYPE_SOUNDDOWN: RTW_INFO("%s: MU HW_CFG_SOUNDING_TYPE_SOUNDDOWN\n", __FUNCTION__); /* Update all MU entry table */ i = 0; do { /* Check BB GID bitmap ready */ val32 = phy_query_bb_reg(adapter, 0xF4C, 0xFFFF0000); is_bitmap_ready = (val32 & BIT(15)) ? _TRUE : _FALSE; i++; rtw_udelay_os(5); } while ((_FALSE == is_bitmap_ready) && (i < 100)); bitmap = (u16)(val32 & 0x3FFF); for (i = 0; i < 15; i++) { if (i < 5) { /* bit0~4 */ id0 = 0; id1 = i + 1; } else if (i < 9) { /* bit5~8 */ id0 = 1; id1 = i - 3; } else if (i < 12) { /* bit9~11 */ id0 = 2; id1 = i - 6; } else if (i < 14) { /* bit12~13 */ id0 = 3; id1 = i - 8; } else { /* bit14 */ id0 = 4; id1 = i - 9; } if (bitmap & BIT(i)) { /* Pair 1 */ gid = (i << 1) + 1; gid_valid[id0] |= (BIT(gid)); gid_valid[id1] |= (BIT(gid)); /* Pair 2 */ gid += 1; gid_valid[id0] |= (BIT(gid)); gid_valid[id1] |= (BIT(gid)); } else { /* Pair 1 */ gid = (i << 1) + 1; gid_valid[id0] &= ~(BIT(gid)); gid_valid[id1] &= ~(BIT(gid)); /* Pair 2 */ gid += 1; gid_valid[id0] &= ~(BIT(gid)); gid_valid[id1] &= ~(BIT(gid)); } } for (i = 0; i < MAX_BEAMFORMEE_ENTRY_NUM; i++) { bfee = &info->bfee_entry[i]; if (_FALSE == bfee->used) continue; if (TEST_FLAG(bfee->cap, BEAMFORMEE_CAP_VHT_MU) && (bfee->mu_reg_index < 6)) { val32 = gid_valid[bfee->mu_reg_index]; for (j = 0; j < 4; j++) { bfee->gid_valid[j] = (u8)(val32 & 0xFF); val32 >>= 8; } } } mu_tx_ctl = rtw_read32(adapter, REG_MU_TX_CTL_8822C); for (i = 0; i < 6; i++) { mu_tx_ctl = BIT_SET_R_MU_TAB_SEL_8822C(mu_tx_ctl, i); rtw_write32(adapter, REG_MU_TX_CTL_8822C, mu_tx_ctl); /* Set MU STA gid valid table */ rtw_write32(adapter, REG_MU_STA_GID_VLD_8822C, gid_valid[i]); } /* Enable TxMU PPDU */ mu_tx_ctl |= BIT_R_EN_MU_MIMO_8822C; rtw_write32(adapter, REG_MU_TX_CTL_8822C, mu_tx_ctl); break; default: break; } } static void _config_sounding(PADAPTER adapter, struct beamformee_entry *bfee, u8 mu_sounding, enum _HW_CFG_SOUNDING_TYPE cfg_type) { if (cfg_type == HW_CFG_SOUNDING_TYPE_RESET) { RTW_INFO("%s: HW_CFG_SOUNDING_TYPE_RESET\n", __FUNCTION__); _sounding_reset_all(adapter); return; } if (_FALSE == mu_sounding) _sounding_config_su(adapter, bfee, cfg_type); else _sounding_config_mu(adapter, bfee, cfg_type); } static void _config_beamformer_su(PADAPTER adapter, struct beamformer_entry *bfer) { /* Beamforming */ u8 nc_index = 0, nr_index = 0; u8 grouping = 0, codebookinfo = 0, coefficientsize = 0; u32 addr_bfer_info, addr_csi_rpt; u32 csi_param; /* Misc */ u8 i; RTW_INFO("%s: Config SU BFer entry HW setting\n", __FUNCTION__); if (bfer->su_reg_index == 0) { addr_bfer_info = REG_ASSOCIATED_BFMER0_INFO_8822C; addr_csi_rpt = REG_TX_CSI_RPT_PARAM_BW20_8822C; } else { addr_bfer_info = REG_ASSOCIATED_BFMER1_INFO_8822C; addr_csi_rpt = REG_TX_CSI_RPT_PARAM_BW20_8822C + 2; } /* Sounding protocol control */ rtw_write8(adapter, REG_SND_PTCL_CTRL_8822C, 0xDB); /* MAC address/Partial AID of Beamformer */ for (i = 0; i < ETH_ALEN; i++) rtw_write8(adapter, addr_bfer_info+i, bfer->mac_addr[i]); /* CSI report parameters of Beamformer */ nc_index = _bf_get_nrx(adapter); /* * 0x718[7] = 1 use Nsts * 0x718[7] = 0 use reg setting * As Bfee, we use Nsts, so nr_index don't care */ nr_index = bfer->NumofSoundingDim; grouping = 0; /* for ac = 1, for n = 3 */ if (TEST_FLAG(bfer->cap, BEAMFORMER_CAP_VHT_SU)) codebookinfo = 1; else if (TEST_FLAG(bfer->cap, BEAMFORMER_CAP_HT_EXPLICIT)) codebookinfo = 3; coefficientsize = 3; csi_param = (u16)((coefficientsize<<10)|(codebookinfo<<8)|(grouping<<6)|(nr_index<<3)|(nc_index)); rtw_write16(adapter, addr_csi_rpt, csi_param); RTW_INFO("%s: nc=%d nr=%d group=%d codebookinfo=%d coefficientsize=%d\n", __FUNCTION__, nc_index, nr_index, grouping, codebookinfo, coefficientsize); RTW_INFO("%s: csi=0x%04x\n", __FUNCTION__, csi_param); /* ndp_rx_standby_timer */ rtw_write8(adapter, REG_SND_PTCL_CTRL_8822C+3, 0x70); /* partial merge from halmac api cfg_sounding_88xx(), may need to refine to apply the api immediately */ { u32 tmp6dc = 0; u8 csi_rsc = 0x0; tmp6dc = (rtw_read32(adapter, REG_BBPSF_CTRL_8822C) | BIT(30) | (csi_rsc << 13)); if (check_fwstate(&adapter->mlmepriv, WIFI_AP_STATE) == _TRUE) tmp6dc |= BIT(12); else tmp6dc &= ~BIT(12); rtw_write32(adapter, REG_BBPSF_CTRL_8822C, tmp6dc); rtw_write32(adapter, REG_CSI_RRSR_8822C, 0x550); } } static void _config_beamformer_mu(PADAPTER adapter, struct beamformer_entry *bfer) { /* General */ PHAL_DATA_TYPE hal; /* Beamforming */ struct beamforming_info *bf_info; u8 nc_index = 0, nr_index = 0; u8 grouping = 0, codebookinfo = 0, coefficientsize = 0; u32 csi_param; /* Misc */ u8 i, val8; u16 val16; RTW_INFO("%s: Config MU BFer entry HW setting\n", __FUNCTION__); hal = GET_HAL_DATA(adapter); bf_info = GET_BEAMFORM_INFO(adapter); /* Reset GID table */ for (i = 0; i < 8; i++) bfer->gid_valid[i] = 0; for (i = 0; i < 16; i++) bfer->user_position[i] = 0; /* CSI report parameters of Beamformer */ nc_index = _bf_get_nrx(adapter); nr_index = 1; /* 0x718[7] = 1 use Nsts, 0x718[7] = 0 use reg setting. as Bfee, we use Nsts, so Nr_index don't care */ grouping = 0; /* no grouping */ codebookinfo = 1; /* 7 bit for psi, 9 bit for phi */ coefficientsize = 0; /* This is nothing really matter */ csi_param = (u16)((coefficientsize<<10)|(codebookinfo<<8)| (grouping<<6)|(nr_index<<3)|(nc_index)); RTW_INFO("%s: nc=%d nr=%d group=%d codebookinfo=%d coefficientsize=%d\n", __func__, nc_index, nr_index, grouping, codebookinfo, coefficientsize); RTW_INFO("%s: csi=0x%04x\n", __func__, csi_param); rtw_halmac_bf_add_mu_bfer(adapter_to_dvobj(adapter), bfer->p_aid, csi_param, bfer->aid & 0xfff, HAL_CSI_SEG_4K, bfer->mac_addr); bf_info->cur_csi_rpt_rate = HALMAC_OFDM6; rtw_halmac_bf_cfg_sounding(adapter_to_dvobj(adapter), HAL_BFEE, bf_info->cur_csi_rpt_rate); /* Set 0x6A0[14] = 1 to accept action_no_ack */ val8 = rtw_read8(adapter, REG_RXFLTMAP0_8822C+1); val8 |= (BIT_MGTFLT14EN_8822C >> 8); rtw_write8(adapter, REG_RXFLTMAP0_8822C+1, val8); /* Set 0x6A2[5:4] = 1 to NDPA and BF report poll */ val8 = rtw_read8(adapter, REG_RXFLTMAP1_8822C); val8 |= BIT_CTRLFLT4EN_8822C | BIT_CTRLFLT5EN_8822C; rtw_write8(adapter, REG_RXFLTMAP1_8822C, val8); } static void _config_beamformee_su(PADAPTER adapter, struct beamformee_entry *bfee) { /* General */ struct mlme_priv *mlme; /* Beamforming */ struct beamforming_info *info; u8 idx; u16 p_aid = 0; /* Misc */ u8 val8; u16 val16; u32 val32; RTW_INFO("%s: Config SU BFee entry HW setting\n", __FUNCTION__); mlme = &adapter->mlmepriv; info = GET_BEAMFORM_INFO(adapter); idx = bfee->su_reg_index; if ((check_fwstate(mlme, WIFI_ADHOC_STATE) == _TRUE) || (check_fwstate(mlme, WIFI_ADHOC_MASTER_STATE) == _TRUE)) p_aid = bfee->mac_id; else p_aid = bfee->p_aid; phydm_txbf_rfmode(GET_PDM_ODM(adapter), info->beamformee_su_cnt, info->beamformee_mu_cnt); /* P_AID of Beamformee & enable NDPA transmission & enable NDPA interrupt */ val32 = rtw_read32(adapter, REG_TXBF_CTRL_8822C); if (idx == 0) { val32 = BIT_SET_R_TXBF0_AID_8822C(val32, p_aid); val32 &= ~(BIT_R_TXBF0_20M_8822C | BIT_R_TXBF0_40M_8822C | BIT_R_TXBF0_80M_8822C); } else { val32 = BIT_SET_R_TXBF1_AID_8822C(val32, p_aid); val32 &= ~(BIT_R_TXBF1_20M_8822C | BIT_R_TXBF1_40M_8822C | BIT_R_TXBF1_80M_8822C); } val32 |= BIT_R_EN_NDPA_INT_8822C | BIT_USE_NDPA_PARAMETER_8822C | BIT_R_ENABLE_NDPA_8822C; rtw_write32(adapter, REG_TXBF_CTRL_8822C, val32); /* CSI report parameters of Beamformee */ val32 = rtw_read32(adapter, REG_ASSOCIATED_BFMEE_SEL_8822C); if (idx == 0) { val32 = BIT_SET_AID0_8822C(val32, p_aid); val32 |= BIT_TXUSER_ID0_8822C; /* unknown? */ val32 &= 0x03FFFFFF; val32 |= 0x60000000; } else { val32 = BIT_SET_AID1_8822C(val32, p_aid); val32 |= BIT_TXUSER_ID1_8822C; /* unknown? */ val32 &= 0x03FFFFFF; val32 |= 0xE0000000; } rtw_write32(adapter, REG_ASSOCIATED_BFMEE_SEL_8822C, val32); } static void _config_beamformee_mu(PADAPTER adapter, struct beamformee_entry *bfee) { /* General */ PHAL_DATA_TYPE hal; /* Beamforming */ struct beamforming_info *info; u8 idx; u32 gid_valid = 0, user_position_l = 0, user_position_h = 0; u32 mu_reg[6] = {REG_WMAC_ASSOCIATED_MU_BFMEE2_8822C, REG_WMAC_ASSOCIATED_MU_BFMEE3_8822C, REG_WMAC_ASSOCIATED_MU_BFMEE4_8822C, REG_WMAC_ASSOCIATED_MU_BFMEE5_8822C, REG_WMAC_ASSOCIATED_MU_BFMEE6_8822C, REG_WMAC_ASSOCIATED_MU_BFMEE7_8822C}; /* Misc */ u8 i, val8; u16 val16; u32 val32; RTW_INFO("%s: Config MU BFee entry HW setting\n", __FUNCTION__); hal = GET_HAL_DATA(adapter); info = GET_BEAMFORM_INFO(adapter); idx = bfee->mu_reg_index; /* User position table */ switch (idx) { case 0: gid_valid = 0x7fe; user_position_l = 0x111110; user_position_h = 0x0; break; case 1: gid_valid = 0x7f806; user_position_l = 0x11000004; user_position_h = 0x11; break; case 2: gid_valid = 0x1f81818; user_position_l = 0x400040; user_position_h = 0x11100; break; case 3: gid_valid = 0x1e186060; user_position_l = 0x4000400; user_position_h = 0x1100040; break; case 4: gid_valid = 0x66618180; user_position_l = 0x40004000; user_position_h = 0x10040400; break; case 5: gid_valid = 0x79860600; user_position_l = 0x40000; user_position_h = 0x4404004; break; } for (i = 0; i < 8; i++) { if (i < 4) { bfee->gid_valid[i] = (u8)(gid_valid & 0xFF); gid_valid >>= 8; } else { bfee->gid_valid[i] = 0; } } for (i = 0; i < 16; i++) { if (i < 4) bfee->user_position[i] = (u8)((user_position_l >> (i*8)) & 0xFF); else if (i < 8) bfee->user_position[i] = (u8)((user_position_h >> ((i-4)*8)) & 0xFF); else bfee->user_position[i] = 0; } /* Sounding protocol control */ rtw_write8(adapter, REG_SND_PTCL_CTRL_8822C, 0xDB); /* select MU STA table */ val32 = rtw_read32(adapter, REG_MU_TX_CTL_8822C); val32 = BIT_SET_R_MU_TAB_SEL_8822C(val32, idx); rtw_write32(adapter, REG_MU_TX_CTL_8822C, val32); /* Reset gid_valid table */ rtw_write32(adapter, REG_MU_STA_GID_VLD_8822C, 0); rtw_write32(adapter, REG_MU_STA_USER_POS_INFO_8822C , user_position_l); rtw_write32(adapter, REG_MU_STA_USER_POS_INFO_8822C+4 , user_position_h); /* set validity of MU STAs */ val32 = BIT_SET_R_MU_TABLE_VALID_8822C(val32, info->beamformee_mu_reg_maping); rtw_write32(adapter, REG_MU_TX_CTL_8822C, val32); RTW_INFO("%s: RegMUTxCtrl=0x%x, user_position_l=0x%x, user_position_h=0x%x\n", __FUNCTION__, val32, user_position_l, user_position_h); val16 = rtw_read16(adapter, mu_reg[idx]); val16 &= 0xFE00; /* Clear PAID */ val16 |= BIT(9); /* Enable MU BFee */ val16 |= bfee->p_aid; rtw_write16(adapter, mu_reg[idx], val16); RTW_INFO("%s: Write mu_reg 0x%x = 0x%x\n", __FUNCTION__, mu_reg[idx], val16); /* 0x42C[30] = 1 (0: from Tx desc, 1: from 0x45F) */ val8 = rtw_read8(adapter, REG_TXBF_CTRL_8822C+3); val8 |= 0xD0; /* Set bit 28, 30, 31 to 3b'111 */ rtw_write8(adapter, REG_TXBF_CTRL_8822C+3, val8); /* Set NDPA rate*/ val8 = phydm_get_ndpa_rate(GET_PDM_ODM(adapter)); rtw_write8(adapter, REG_NDPA_RATE_8822C, val8); val8 = rtw_read8(adapter, REG_NDPA_OPT_CTRL_8822C); val8 = BIT_SET_R_NDPA_BW_8822C(val8, 0); /* Clear bit 0, 1 */ rtw_write8(adapter, REG_NDPA_OPT_CTRL_8822C, val8); val32 = rtw_read32(adapter, REG_SND_PTCL_CTRL_8822C); val32 = (val32 & 0xFF0000FF) | 0x020200; /* Set [23:8] to 0x0202 */ rtw_write32(adapter, REG_SND_PTCL_CTRL_8822C, val32); /* Set 0x6A0[14] = 1 to accept action_no_ack */ val8 = rtw_read8(adapter, REG_RXFLTMAP0_8822C+1); val8 |= (BIT_MGTFLT14EN_8822C >> 8); rtw_write8(adapter, REG_RXFLTMAP0_8822C+1, val8); /* 0x718[15] = 1. Patch for STA2 CSI report start offset error issue */ val8 = rtw_read8(adapter, REG_SND_PTCL_CTRL_8822C+1); val8 |= (BIT_VHTNDP_RPTPOLL_CSI_STR_OFFSET_SEL_8822C >> 8); rtw_write8(adapter, REG_SND_PTCL_CTRL_8822C+1, val8); /* End of MAC registers setting */ phydm_txbf_rfmode(GET_PDM_ODM(adapter), info->beamformee_su_cnt, info->beamformee_mu_cnt); /* Need to set timer 2015.12.23 */ /* Special for plugfest */ rtw_mdelay_os(50); /* wait for 4-way handshake ending */ rtw_bf_send_vht_gid_mgnt_packet(adapter, bfee->mac_addr, bfee->gid_valid, bfee->user_position); } static void _reset_beamformer_su(PADAPTER adapter, struct beamformer_entry *bfer) { /* Beamforming */ struct beamforming_info *info; u8 idx; info = GET_BEAMFORM_INFO(adapter); /* SU BFer */ idx = bfer->su_reg_index; if (idx == 0) { rtw_write32(adapter, REG_ASSOCIATED_BFMER0_INFO_8822C, 0); rtw_write16(adapter, REG_ASSOCIATED_BFMER0_INFO_8822C+4, 0); rtw_write16(adapter, REG_TX_CSI_RPT_PARAM_BW20_8822C, 0); } else { rtw_write32(adapter, REG_ASSOCIATED_BFMER1_INFO_8822C, 0); rtw_write16(adapter, REG_ASSOCIATED_BFMER1_INFO_8822C+4, 0); rtw_write16(adapter, REG_TX_CSI_RPT_PARAM_BW20_8822C+2, 0); } info->beamformer_su_reg_maping &= ~BIT(idx); bfer->su_reg_index = 0xFF; RTW_INFO("%s: Clear SU BFer entry(%d) HW setting\n", __FUNCTION__, idx); } static void _reset_beamformer_mu(PADAPTER adapter, struct beamformer_entry *bfer) { struct beamforming_info *bf_info; bf_info = GET_BEAMFORM_INFO(adapter); rtw_halmac_bf_del_mu_bfer(adapter_to_dvobj(adapter)); if (bf_info->beamformer_su_cnt == 0 && bf_info->beamformer_mu_cnt == 0) rtw_halmac_bf_del_sounding(adapter_to_dvobj(adapter), HAL_BFEE); RTW_INFO("%s: Clear MU BFer entry HW setting\n", __FUNCTION__); } static void _reset_beamformee_su(PADAPTER adapter, struct beamformee_entry *bfee) { /* Beamforming */ struct beamforming_info *info; u8 idx; /* Misc */ u32 txbf_ctrl, bfmee_sel; info = GET_BEAMFORM_INFO(adapter); /* SU BFee */ idx = bfee->su_reg_index; /* Force disable sounding config */ _config_sounding(adapter, bfee, _FALSE, HW_CFG_SOUNDING_TYPE_LEAVE); /* clear P_AID */ txbf_ctrl = rtw_read32(adapter, REG_TXBF_CTRL_8822C); bfmee_sel = rtw_read32(adapter, REG_ASSOCIATED_BFMEE_SEL_8822C); if (idx == 0) { txbf_ctrl = BIT_SET_R_TXBF0_AID_8822C(txbf_ctrl, 0); txbf_ctrl &= ~(BIT_R_TXBF0_20M_8822C | BIT_R_TXBF0_40M_8822C | BIT_R_TXBF0_80M_8822C); bfmee_sel = BIT_SET_AID0_8822C(bfmee_sel, 0); bfmee_sel &= ~BIT_TXUSER_ID0_8822C; } else { txbf_ctrl = BIT_SET_R_TXBF1_AID_8822C(txbf_ctrl, 0); txbf_ctrl &= ~(BIT_R_TXBF1_20M_8822C | BIT_R_TXBF1_40M_8822C | BIT_R_TXBF1_80M_8822C); bfmee_sel = BIT_SET_AID1_8822C(bfmee_sel, 0); bfmee_sel &= ~BIT_TXUSER_ID1_8822C; } txbf_ctrl |= BIT_R_EN_NDPA_INT_8822C | BIT_USE_NDPA_PARAMETER_8822C | BIT_R_ENABLE_NDPA_8822C; rtw_write32(adapter, REG_TXBF_CTRL_8822C, txbf_ctrl); rtw_write32(adapter, REG_ASSOCIATED_BFMEE_SEL_8822C, bfmee_sel); info->beamformee_su_reg_maping &= ~BIT(idx); bfee->su_reg_index = 0xFF; RTW_INFO("%s: Clear SU BFee entry(%d) HW setting\n", __FUNCTION__, idx); } static void _reset_beamformee_mu(PADAPTER adapter, struct beamformee_entry *bfee) { /* Beamforming */ struct beamforming_info *info; u8 idx; u32 mu_reg[6] = {REG_WMAC_ASSOCIATED_MU_BFMEE2_8822C, REG_WMAC_ASSOCIATED_MU_BFMEE3_8822C, REG_WMAC_ASSOCIATED_MU_BFMEE4_8822C, REG_WMAC_ASSOCIATED_MU_BFMEE5_8822C, REG_WMAC_ASSOCIATED_MU_BFMEE6_8822C, REG_WMAC_ASSOCIATED_MU_BFMEE7_8822C}; /* Misc */ u32 val32; info = GET_BEAMFORM_INFO(adapter); /* MU BFee */ idx = bfee->mu_reg_index; /* Disable sending NDPA & BF-rpt-poll to this BFee */ rtw_write16(adapter, mu_reg[idx] , 0); /* Set validity of MU STA */ val32 = rtw_read32(adapter, REG_MU_TX_CTL_8822C); val32 &= ~BIT(idx); rtw_write32(adapter, REG_MU_TX_CTL_8822C, val32); /* Force disable sounding config */ _config_sounding(adapter, bfee, _TRUE, HW_CFG_SOUNDING_TYPE_LEAVE); info->beamformee_mu_reg_maping &= ~BIT(idx); bfee->mu_reg_index = 0xFF; RTW_INFO("%s: Clear MU BFee entry(%d) HW setting\n", __FUNCTION__, idx); } void rtl8822c_phy_bf_reset_all(PADAPTER adapter) { struct beamforming_info *info; u8 i, val8; u32 val32; RTW_INFO("+%s\n", __FUNCTION__); info = GET_BEAMFORM_INFO(adapter); info->bSetBFHwConfigInProgess = _TRUE; /* Reset MU BFer entry setting */ /* Clear validity of MU STA0 and MU STA1 */ val32 = rtw_read32(adapter, REG_MU_TX_CTL_8822C); val32 = BIT_SET_R_MU_TABLE_VALID_8822C(val32, 0); rtw_write32(adapter, REG_MU_TX_CTL_8822C, val32); /* Reset SU BFer entry setting */ rtw_write32(adapter, REG_ASSOCIATED_BFMER0_INFO_8822C, 0); rtw_write16(adapter, REG_ASSOCIATED_BFMER0_INFO_8822C+4, 0); rtw_write16(adapter, REG_TX_CSI_RPT_PARAM_BW20_8822C, 0); rtw_write32(adapter, REG_ASSOCIATED_BFMER1_INFO_8822C, 0); rtw_write16(adapter, REG_ASSOCIATED_BFMER1_INFO_8822C+4, 0); rtw_write16(adapter, REG_TX_CSI_RPT_PARAM_BW20_8822C+2, 0); /* Force disable sounding */ _config_sounding(adapter, NULL, _FALSE, HW_CFG_SOUNDING_TYPE_RESET); /* Config RF mode */ phydm_txbf_rfmode(GET_PDM_ODM(adapter), info->beamformee_su_cnt, info->beamformee_mu_cnt); /* Reset MU BFee entry setting */ /* Disable sending NDPA & BF-rpt-poll to all BFee */ for (i=0; i < MAX_NUM_BEAMFORMEE_MU; i++) rtw_write16(adapter, REG_WMAC_ASSOCIATED_MU_BFMEE2_8822C+(i*2), 0); /* set validity of MU STA */ rtw_write32(adapter, REG_MU_TX_CTL_8822C, 0); /* Reset SU BFee entry setting */ /* SU BF0 and BF1 */ val32 = BIT_R_EN_NDPA_INT_8822C | BIT_USE_NDPA_PARAMETER_8822C | BIT_R_ENABLE_NDPA_8822C; rtw_write32(adapter, REG_TXBF_CTRL_8822C, val32); rtw_write32(adapter, REG_ASSOCIATED_BFMEE_SEL_8822C, 0); info->bSetBFHwConfigInProgess = _FALSE; RTW_INFO("-%s\n", __FUNCTION__); } void rtl8822c_phy_bf_init(PADAPTER adapter) { u8 v8; u32 v32; v32 = rtw_read32(adapter, REG_MU_TX_CTL_8822C); /* Enable P1 aggr new packet according to P0 transfer time */ v32 |= BIT_R_MU_P1_WAIT_STATE_EN_8822C; /* MU Retry Limit */ v32 = BIT_SET_R_MU_RL_8822C(v32, 0xA); /* Disable Tx MU-MIMO until sounding done */ v32 &= ~BIT_R_EN_MU_MIMO_8822C; /* Clear validity of MU STAs */ v32 = BIT_SET_R_MU_TABLE_VALID_8822C(v32, 0); rtw_write32(adapter, REG_MU_TX_CTL_8822C, v32); /* MU-MIMO Option as default value */ v8 = BIT_WMAC_TXMU_ACKPOLICY_8822C(3); v8 |= BIT_WMAC_TXMU_ACKPOLICY_EN_8822C; rtw_write8(adapter, REG_MU_BF_OPTION_8822C, v8); /* MU-MIMO Control as default value */ rtw_write16(adapter, REG_WMAC_MU_BF_CTL_8822C, 0); /* Set MU NDPA rate & BW source */ /* 0x42C[30] = 1 (0: from Tx desc, 1: from 0x45F) */ v8 = rtw_read8(adapter, REG_TXBF_CTRL_8822C+3); v8 |= (BIT_USE_NDPA_PARAMETER_8822C >> 24); rtw_write8(adapter, REG_TXBF_CTRL_8822C+3, v8); /* 0x45F[7:0] = 0x10 (Rate=OFDM_6M, BW20) */ rtw_write8(adapter, REG_NDPA_OPT_CTRL_8822C, 0x10); /* Temp Settings */ /* STA2's CSI rate is fixed at 6M */ v8 = rtw_read8(adapter, 0x6DF); v8 = (v8 & 0xC0) | 0x4; rtw_write8(adapter, 0x6DF, v8); } void rtl8822c_phy_bf_enter(PADAPTER adapter, struct sta_info *sta) { struct beamforming_info *info; struct beamformer_entry *bfer; struct beamformee_entry *bfee; RTW_INFO("+%s: " MAC_FMT "\n", __FUNCTION__, MAC_ARG(sta->cmn.mac_addr)); info = GET_BEAMFORM_INFO(adapter); bfer = rtw_bf_bfer_get_entry_by_addr(adapter, sta->cmn.mac_addr); bfee = rtw_bf_bfee_get_entry_by_addr(adapter, sta->cmn.mac_addr); info->bSetBFHwConfigInProgess = _TRUE; if (bfer) { bfer->state = BEAMFORM_ENTRY_HW_STATE_ADDING; if (TEST_FLAG(bfer->cap, BEAMFORMER_CAP_VHT_MU)) _config_beamformer_mu(adapter, bfer); else if (TEST_FLAG(bfer->cap, BEAMFORMER_CAP_VHT_SU|BEAMFORMER_CAP_HT_EXPLICIT)) _config_beamformer_su(adapter, bfer); bfer->state = BEAMFORM_ENTRY_HW_STATE_ADDED; } if (bfee) { bfee->state = BEAMFORM_ENTRY_HW_STATE_ADDING; if (TEST_FLAG(bfee->cap, BEAMFORMEE_CAP_VHT_MU)) _config_beamformee_mu(adapter, bfee); else if (TEST_FLAG(bfee->cap, BEAMFORMEE_CAP_VHT_SU|BEAMFORMEE_CAP_HT_EXPLICIT)) _config_beamformee_su(adapter, bfee); bfee->state = BEAMFORM_ENTRY_HW_STATE_ADDED; } info->bSetBFHwConfigInProgess = _FALSE; RTW_INFO("-%s\n", __FUNCTION__); } void rtl8822c_phy_bf_leave(PADAPTER adapter, u8 *addr) { struct beamforming_info *info; struct beamformer_entry *bfer; struct beamformee_entry *bfee; RTW_INFO("+%s: " MAC_FMT "\n", __FUNCTION__, MAC_ARG(addr)); info = GET_BEAMFORM_INFO(adapter); bfer = rtw_bf_bfer_get_entry_by_addr(adapter, addr); bfee = rtw_bf_bfee_get_entry_by_addr(adapter, addr); /* Clear P_AID of Beamformee */ /* Clear MAC address of Beamformer */ /* Clear Associated Bfmee Sel */ if (bfer) { bfer->state = BEAMFORM_ENTRY_HW_STATE_DELETING; rtw_write8(adapter, REG_SND_PTCL_CTRL_8822C, 0xD8); if (TEST_FLAG(bfer->cap, BEAMFORMER_CAP_VHT_MU)) _reset_beamformer_mu(adapter, bfer); else if (TEST_FLAG(bfer->cap, BEAMFORMER_CAP_VHT_SU|BEAMFORMER_CAP_HT_EXPLICIT)) _reset_beamformer_su(adapter, bfer); bfer->state = BEAMFORM_ENTRY_HW_STATE_NONE; bfer->cap = BEAMFORMING_CAP_NONE; bfer->used = _FALSE; } if (bfee) { bfee->state = BEAMFORM_ENTRY_HW_STATE_DELETING; phydm_txbf_rfmode(GET_PDM_ODM(adapter), info->beamformee_su_cnt, info->beamformee_mu_cnt); if (TEST_FLAG(bfee->cap, BEAMFORMEE_CAP_VHT_MU)) _reset_beamformee_mu(adapter, bfee); else if (TEST_FLAG(bfee->cap, BEAMFORMEE_CAP_VHT_SU|BEAMFORMEE_CAP_HT_EXPLICIT)) _reset_beamformee_su(adapter, bfee); bfee->state = BEAMFORM_ENTRY_HW_STATE_NONE; bfee->cap = BEAMFORMING_CAP_NONE; bfee->used = _FALSE; } RTW_INFO("-%s\n", __FUNCTION__); } void rtl8822c_phy_bf_set_gid_table(PADAPTER adapter, struct beamformer_entry *bfer_info) { struct beamformer_entry *bfer; struct beamforming_info *info; u32 gid_valid[2] = {0}; u32 user_position[4] = {0}; int i; /* update bfer info */ bfer = rtw_bf_bfer_get_entry_by_addr(adapter, bfer_info->mac_addr); if (!bfer) { RTW_INFO("%s: Cannot find BFer entry!!\n", __func__); return; } _rtw_memcpy(bfer->gid_valid, bfer_info->gid_valid, 8); _rtw_memcpy(bfer->user_position, bfer_info->user_position, 16); info = GET_BEAMFORM_INFO(adapter); info->bSetBFHwConfigInProgess = _TRUE; /* For GID 0~31 */ for (i = 0; i < 4; i++) gid_valid[0] |= (bfer->gid_valid[i] << (i << 3)); for (i = 0; i < 8; i++) { if (i < 4) user_position[0] |= (bfer->user_position[i] << (i << 3)); else user_position[1] |= (bfer->user_position[i] << ((i - 4) << 3)); } RTW_INFO("%s: STA0: gid_valid=0x%x, user_position_l=0x%x, user_position_h=0x%x\n", __func__, gid_valid[0], user_position[0], user_position[1]); /* For GID 32~64 */ for (i = 4; i < 8; i++) gid_valid[1] |= (bfer->gid_valid[i] << ((i - 4) << 3)); for (i = 8; i < 16; i++) { if (i < 12) user_position[2] |= (bfer->user_position[i] << ((i - 8) << 3)); else user_position[3] |= (bfer->user_position[i] << ((i - 12) << 3)); } RTW_INFO("%s: STA1: gid_valid=0x%x, user_position_l=0x%x, user_position_h=0x%x\n", __func__, gid_valid[1], user_position[2], user_position[3]); rtw_halmac_bf_cfg_mu_bfee(adapter_to_dvobj(adapter), gid_valid, user_position); info->bSetBFHwConfigInProgess = _FALSE; } void rtl8822c_phy_bf_sounding_status(PADAPTER adapter, u8 status) { struct beamforming_info *info; struct sounding_info *sounding; struct beamformee_entry *bfee; enum _HW_CFG_SOUNDING_TYPE sounding_type; u16 val16; u32 val32; u8 is_sounding_success[6] = {0}; RTW_INFO("+%s\n", __FUNCTION__); info = GET_BEAMFORM_INFO(adapter); sounding = &info->sounding_info; info->bSetBFHwConfigInProgess = _TRUE; if (sounding->state == SOUNDING_STATE_SU_SOUNDDOWN) { /* SU sounding done */ RTW_INFO("%s: SUBFeeCurIdx=%d\n", __FUNCTION__, sounding->su_bfee_curidx); bfee = &info->bfee_entry[sounding->su_bfee_curidx]; if (bfee->bSoundingTimeout) { RTW_INFO("%s: Return because SUBFeeCurIdx(%d) is sounding timeout!!!\n", __FUNCTION__, sounding->su_bfee_curidx); info->bSetBFHwConfigInProgess = _FALSE; return; } RTW_INFO("%s: Config SU sound down HW settings\n", __FUNCTION__); /* Config SU sounding */ if (_TRUE == status) sounding_type = HW_CFG_SOUNDING_TYPE_SOUNDDOWN; else sounding_type = HW_CFG_SOUNDING_TYPE_LEAVE; _config_sounding(adapter, bfee, _FALSE, sounding_type); /* Why set here? */ /* disable NDP packet use beamforming */ val16 = rtw_read16(adapter, REG_TXBF_CTRL_8822C); val16 |= BIT_DIS_NDP_BFEN_8822C; rtw_write16(adapter, REG_TXBF_CTRL_8822C, val16); } else if (sounding->state == SOUNDING_STATE_MU_SOUNDDOWN) { /* MU sounding done */ RTW_INFO("%s: Config MU sound down HW settings\n", __FUNCTION__); val32 = rtw_read32(adapter, REG_WMAC_ASSOCIATED_MU_BFMEE2_8822C); is_sounding_success[0] = (val32 & BIT_STATUS_BFEE2_8822C) ? 1:0; is_sounding_success[1] = ((val32 >> 16) & BIT_STATUS_BFEE3_8822C) ? 1:0; val32 = rtw_read32(adapter, REG_WMAC_ASSOCIATED_MU_BFMEE4_8822C); is_sounding_success[2] = (val32 & BIT_STATUS_BFEE4_8822C) ? 1:0; is_sounding_success[3] = ((val32 >> 16) & BIT_BIT_STATUS_BFEE5_8822C) ? 1:0; val32 = rtw_read32(adapter, REG_WMAC_ASSOCIATED_MU_BFMEE6_8822C); is_sounding_success[4] = (val32 & BIT_STATUS_BFEE6_8822C) ? 1:0; is_sounding_success[5] = ((val32 >> 16) & BIT_STATUS_BFEE7_8822C) ? 1:0; RTW_INFO("%s: is_sounding_success STA1:%d, STA2:%d, STA3:%d, STA4:%d, STA5:%d, STA6:%d\n", __FUNCTION__, is_sounding_success[0], is_sounding_success[1] , is_sounding_success[2], is_sounding_success[3], is_sounding_success[4], is_sounding_success[5]); /* Config MU sounding */ _config_sounding(adapter, NULL, _TRUE, HW_CFG_SOUNDING_TYPE_SOUNDDOWN); } else { RTW_INFO("%s: Invalid sounding state(%d). Do nothing!\n", __FUNCTION__, sounding->state); } info->bSetBFHwConfigInProgess = _FALSE; RTW_INFO("-%s\n", __FUNCTION__); } #endif /* CONFIG_BEAMFORMING */