/* convolve.c -- implements (non-"fast") convolution */ /* * Note: this code is mostly generated by translate.lsp (see convole.tran * in the tran directory), but it has been modified by hand to extend the * stop time to include the "tail" of the convolution beyond the length * of the first parameter. */ #include "stdio.h" #ifndef mips #include "stdlib.h" #endif #include "xlisp.h" #include "sound.h" #include "falloc.h" #include "cext.h" #include "convolve.h" void convolve_free(); typedef struct convolve_susp_struct { snd_susp_node susp; long terminate_cnt; boolean logically_stopped; sound_type x_snd; long x_snd_cnt; sample_block_values_type x_snd_ptr; table_type table; sample_type *h_buf; double length_of_h; long h_len; long x_buf_len; sample_type *x_buffer_pointer; sample_type *x_buffer_current; } convolve_susp_node, *convolve_susp_type; void h_reverse(sample_type *h, long len) { sample_type temp; int i; for (i = 0; i < len; i++) { temp = h[i]; h[i] = h[len - 1]; h[len - 1] = temp; len--; } } void convolve_s_fetch(register convolve_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register sample_type * h_buf_reg; register long h_len_reg; register long x_buf_len_reg; register sample_type * x_buffer_pointer_reg; register sample_type * x_buffer_current_reg; register sample_type x_snd_scale_reg = susp->x_snd->scale; register sample_block_values_type x_snd_ptr_reg; falloc_sample_block(out, "convolve_s_fetch"); out_ptr = out->samples; snd_list->block = out; while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the x_snd input sample block: */ /* based on susp_check_term_log_samples, but offset by h_len */ /* THIS IS EXPANDED BELOW * susp_check_term_log_samples(x_snd, x_snd_ptr, x_snd_cnt); */ if (susp->x_snd_cnt == 0) { susp_get_samples(x_snd, x_snd_ptr, x_snd_cnt); /* THIS IS EXPANDED BELOW *logical_stop_test(x_snd, susp->x_snd_cnt); */ if (susp->x_snd->logical_stop_cnt == susp->x_snd->current - susp->x_snd_cnt) { min_cnt(&susp->susp.log_stop_cnt, susp->x_snd, (snd_susp_type) susp, susp->x_snd_cnt); } /* THIS IS EXPANDED BELOW * terminate_test(x_snd_ptr, x_snd, susp->x_snd_cnt); */ if (susp->x_snd_ptr == zero_block->samples) { /* ### modify this to terminate at an offset of (susp->h_len) */ /* Note: in the min_cnt function, susp->x_snd_cnt is *subtracted* * from susp->x_snd->current to form the terminate time, so to * increase the time, we need to *subtract* susp->h_len, which * due to the double negative, *adds* susp->h_len to the ultimate * terminate time calculation. */ min_cnt(&susp->terminate_cnt, susp->x_snd, (snd_susp_type) susp, susp->x_snd_cnt - susp->h_len); } } togo = min(togo, susp->x_snd_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = to_stop; } } n = togo; h_buf_reg = susp->h_buf; h_len_reg = susp->h_len; x_buf_len_reg = susp->x_buf_len; x_buffer_pointer_reg = susp->x_buffer_pointer; x_buffer_current_reg = susp->x_buffer_current; x_snd_ptr_reg = susp->x_snd_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ long i; double sum; /* see if we've reached end of x_buffer */ if ((x_buffer_pointer_reg + x_buf_len_reg) <= (x_buffer_current_reg + h_len_reg)) { /* shift x_buffer from current back to base */ for (i = 1; i < h_len_reg; i++) { x_buffer_pointer_reg[i-1] = x_buffer_current_reg[i]; } /* this will be incremented back to x_buffer_pointer_reg below */ x_buffer_current_reg = x_buffer_pointer_reg - 1; } x_buffer_current_reg++; x_buffer_current_reg[h_len_reg - 1] = (x_snd_scale_reg * *x_snd_ptr_reg++); sum = 0.0; for (i = 0; i < h_len_reg; i++) { sum += x_buffer_current_reg[i] * h_buf_reg[i]; } *out_ptr_reg++ = (sample_type) sum; } while (--n); /* inner loop */ susp->x_buffer_pointer = x_buffer_pointer_reg; susp->x_buffer_current = x_buffer_current_reg; /* using x_snd_ptr_reg is a bad idea on RS/6000: */ susp->x_snd_ptr += togo; out_ptr += togo; susp_took(x_snd_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; } } /* convolve_s_fetch */ void convolve_toss_fetch(susp, snd_list) register convolve_susp_type susp; snd_list_type snd_list; { time_type final_time = susp->susp.t0; long n; /* fetch samples from x_snd up to final_time for this block of zeros */ while ((round((final_time - susp->x_snd->t0) * susp->x_snd->sr)) >= susp->x_snd->current) susp_get_samples(x_snd, x_snd_ptr, x_snd_cnt); /* convert to normal processing when we hit final_count */ /* we want each signal positioned at final_time */ n = round((final_time - susp->x_snd->t0) * susp->x_snd->sr - (susp->x_snd->current - susp->x_snd_cnt)); susp->x_snd_ptr += n; susp_took(x_snd_cnt, n); susp->susp.fetch = susp->susp.keep_fetch; (*(susp->susp.fetch))(susp, snd_list); } void convolve_mark(convolve_susp_type susp) { sound_xlmark(susp->x_snd); } void convolve_free(convolve_susp_type susp) { table_unref(susp->table); free(susp->x_buffer_pointer); sound_unref(susp->x_snd); ffree_generic(susp, sizeof(convolve_susp_node), "convolve_free"); } void convolve_print_tree(convolve_susp_type susp, int n) { indent(n); stdputstr("x_snd:"); sound_print_tree_1(susp->x_snd, n); } sound_type snd_make_convolve(sound_type x_snd, sound_type h_snd) { register convolve_susp_type susp; rate_type sr = x_snd->sr; time_type t0 = x_snd->t0; sample_type scale_factor = 1.0F; time_type t0_min = t0; falloc_generic(susp, convolve_susp_node, "snd_make_convolve"); susp->table = sound_to_table(h_snd); susp->h_buf = susp->table->samples; susp->length_of_h = susp->table->length; susp->h_len = (long) susp->length_of_h; h_reverse(susp->h_buf, susp->h_len); susp->x_buf_len = 2 * susp->h_len; susp->x_buffer_pointer = calloc((2 * (susp->h_len)), sizeof(float)); susp->x_buffer_current = susp->x_buffer_pointer; susp->susp.fetch = convolve_s_fetch; susp->terminate_cnt = UNKNOWN; /* handle unequal start times, if any */ if (t0 < x_snd->t0) sound_prepend_zeros(x_snd, t0); /* minimum start time over all inputs: */ t0_min = min(x_snd->t0, t0); /* how many samples to toss before t0: */ susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5); if (susp->susp.toss_cnt > 0) { susp->susp.keep_fetch = susp->susp.fetch; susp->susp.fetch = convolve_toss_fetch; } /* initialize susp state */ susp->susp.free = convolve_free; susp->susp.sr = sr; susp->susp.t0 = t0; susp->susp.mark = convolve_mark; susp->susp.print_tree = convolve_print_tree; susp->susp.name = "convolve"; susp->logically_stopped = false; susp->susp.log_stop_cnt = logical_stop_cnt_cvt(x_snd); susp->susp.current = 0; susp->x_snd = x_snd; susp->x_snd_cnt = 0; return sound_create((snd_susp_type)susp, t0, sr, scale_factor); } sound_type snd_convolve(sound_type x_snd, sound_type h_snd) { sound_type x_snd_copy = sound_copy(x_snd); return snd_make_convolve(x_snd_copy, h_snd); }