/***************************************************/ /*! \class NRev \brief CCRMA's NRev reverberator class. This class is derived from the CLM NRev function, which is based on the use of networks of simple allpass and comb delay filters. This particular arrangement consists of 6 comb filters in parallel, followed by 3 allpass filters, a lowpass filter, and another allpass in series, followed by two allpass filters in parallel with corresponding right and left outputs. by Perry R. Cook and Gary P. Scavone, 1995 - 2005. */ /***************************************************/ #include "NRev.h" #include using namespace Nyq; NRev :: NRev(StkFloat T60) { int lengths[15] = {1433, 1601, 1867, 2053, 2251, 2399, 347, 113, 37, 59, 53, 43, 37, 29, 19}; double scaler = Stk::sampleRate() / 25641.0; int delay, i; for (i=0; i<15; i++) { delay = (int) floor(scaler * lengths[i]); if ( (delay & 1) == 0) delay++; while ( !this->isPrime(delay) ) delay += 2; lengths[i] = delay; } for (i=0; i<6; i++) { combDelays_[i].setMaximumDelay( lengths[i] ); combDelays_[i].setDelay( lengths[i] ); combCoefficient_[i] = pow(10.0, (-3 * lengths[i] / (T60 * Stk::sampleRate()))); } for (i=0; i<8; i++) { allpassDelays_[i].setMaximumDelay( lengths[i+6] ); allpassDelays_[i].setDelay( lengths[i+6] ); } this->setT60( T60 ); allpassCoefficient_ = 0.7; effectMix_ = 0.3; this->clear(); } NRev :: ~NRev() { } void NRev :: clear() { int i; for (i=0; i<6; i++) combDelays_[i].clear(); for (i=0; i<8; i++) allpassDelays_[i].clear(); lastOutput_[0] = 0.0; lastOutput_[1] = 0.0; lowpassState_ = 0.0; } void NRev :: setT60( StkFloat T60 ) { for ( int i=0; i<6; i++ ) combCoefficient_[i] = pow(10.0, (-3.0 * combDelays_[i].getDelay() / (T60 * Stk::sampleRate()))); } StkFloat NRev :: computeSample(StkFloat input) { StkFloat temp, temp0, temp1, temp2, temp3; int i; temp0 = 0.0; for (i=0; i<6; i++) { temp = input + (combCoefficient_[i] * combDelays_[i].lastOut()); temp0 += combDelays_[i].tick(temp); } for (i=0; i<3; i++) { temp = allpassDelays_[i].lastOut(); temp1 = allpassCoefficient_ * temp; temp1 += temp0; allpassDelays_[i].tick(temp1); temp0 = -(allpassCoefficient_ * temp1) + temp; } // One-pole lowpass filter. lowpassState_ = 0.7*lowpassState_ + 0.3*temp0; temp = allpassDelays_[3].lastOut(); temp1 = allpassCoefficient_ * temp; temp1 += lowpassState_; allpassDelays_[3].tick(temp1); temp1 = -(allpassCoefficient_ * temp1) + temp; temp = allpassDelays_[4].lastOut(); temp2 = allpassCoefficient_ * temp; temp2 += temp1; allpassDelays_[4].tick(temp2); lastOutput_[0] = effectMix_*(-(allpassCoefficient_ * temp2) + temp); temp = allpassDelays_[5].lastOut(); temp3 = allpassCoefficient_ * temp; temp3 += temp1; allpassDelays_[5].tick(temp3); lastOutput_[1] = effectMix_*(-(allpassCoefficient_ * temp3) + temp); temp = (1.0 - effectMix_) * input; lastOutput_[0] += temp; lastOutput_[1] += temp; return Effect::lastOut(); }