/***************************************************/ /*! \class Saxofony \brief STK faux conical bore reed instrument class. This class implements a "hybrid" digital waveguide instrument that can generate a variety of wind-like sounds. It has also been referred to as the "blowed string" model. The waveguide section is essentially that of a string, with one rigid and one lossy termination. The non-linear function is a reed table. The string can be "blown" at any point between the terminations, though just as with strings, it is impossible to excite the system at either end. If the excitation is placed at the string mid-point, the sound is that of a clarinet. At points closer to the "bridge", the sound is closer to that of a saxophone. See Scavone (2002) for more details. This is a digital waveguide model, making its use possibly subject to patents held by Stanford University, Yamaha, and others. Control Change Numbers: - Reed Stiffness = 2 - Reed Aperture = 26 - Noise Gain = 4 - Blow Position = 11 - Vibrato Frequency = 29 - Vibrato Gain = 1 - Breath Pressure = 128 by Perry R. Cook and Gary P. Scavone, 1995 - 2005. */ /***************************************************/ #include "Saxofony.h" #include "SKINI.msg" using namespace Nyq; Saxofony :: Saxofony(StkFloat lowestFrequency) { length_ = (unsigned long) (Stk::sampleRate() / lowestFrequency + 1); // Initialize blowing position to 0.2 of length / 2. position_ = 0.2; delays_[0].setMaximumDelay( length_ ); delays_[0].setDelay( (1.0-position_) * (length_ >> 1) ); delays_[1].setMaximumDelay( length_ ); delays_[1].setDelay( (1.0-position_) * (length_ >> 1) ); reedTable_.setOffset( 0.7 ); reedTable_.setSlope( 0.3 ); vibrato_.setFrequency((StkFloat) 5.735); outputGain_ = 0.3; noiseGain_ = 0.2; vibratoGain_ = 0.1; } Saxofony :: ~Saxofony() { } void Saxofony :: clear() { delays_[0].clear(); delays_[1].clear(); filter_.clear(); } void Saxofony :: setFrequency(StkFloat frequency) { StkFloat freakency = frequency; if ( frequency <= 0.0 ) { errorString_ << "Saxofony::setFrequency: parameter is less than or equal to zero!"; handleError( StkError::WARNING ); freakency = 220.0; } StkFloat delay = (Stk::sampleRate() / freakency) - (StkFloat) 3.0; if (delay <= 0.0) delay = 0.3; else if (delay > length_) delay = length_; delays_[0].setDelay( (1.0-position_) * delay ); delays_[1].setDelay( position_ * delay ); } void Saxofony :: setBlowPosition(StkFloat position) { if ( position_ == position ) return; if ( position < 0.0 ) position_ = 0.0; else if ( position > 1.0 ) position_ = 1.0; else position_ = position; StkFloat totalDelay = delays_[0].getDelay(); totalDelay += delays_[1].getDelay(); delays_[0].setDelay( (1.0-position_) * totalDelay ); delays_[1].setDelay( position_ * totalDelay ); } void Saxofony :: startBlowing(StkFloat amplitude, StkFloat rate) { envelope_.setRate( rate ); envelope_.setTarget( amplitude ); } void Saxofony :: stopBlowing(StkFloat rate) { envelope_.setRate( rate ); envelope_.setTarget( 0.0 ); } void Saxofony :: noteOn(StkFloat frequency, StkFloat amplitude) { this->setFrequency( frequency ); this->startBlowing( 0.55 + (amplitude * 0.30), amplitude * 0.005 ); outputGain_ = amplitude + 0.001; #if defined(_STK_DEBUG_) errorString_ << "Saxofony::NoteOn: frequency = " << frequency << ", amplitude = " << amplitude << "."; handleError( StkError::DEBUG_WARNING ); #endif } void Saxofony :: noteOff(StkFloat amplitude) { this->stopBlowing( amplitude * 0.01 ); #if defined(_STK_DEBUG_) errorString_ << "Saxofony::NoteOff: amplitude = " << amplitude << "."; handleError( StkError::DEBUG_WARNING ); #endif } StkFloat Saxofony :: computeSample() { StkFloat pressureDiff; StkFloat breathPressure; StkFloat temp; // Calculate the breath pressure (envelope + noise + vibrato) breathPressure = envelope_.tick(); breathPressure += breathPressure * noiseGain_ * noise_.tick(); breathPressure += breathPressure * vibratoGain_ * vibrato_.tick(); temp = -0.95 * filter_.tick( delays_[0].lastOut() ); lastOutput_ = temp - delays_[1].lastOut(); pressureDiff = breathPressure - lastOutput_; delays_[1].tick( temp ); delays_[0].tick( breathPressure - (pressureDiff * reedTable_.tick(pressureDiff)) - temp ); lastOutput_ *= outputGain_; return lastOutput_; } void Saxofony :: controlChange(int number, StkFloat value) { StkFloat norm = value * ONE_OVER_128; if ( norm < 0 ) { norm = 0.0; errorString_ << "Saxofony::controlChange: control value less than zero ... setting to zero!"; handleError( StkError::WARNING ); } else if ( norm > 1.0 ) { norm = 1.0; errorString_ << "Saxofony::controlChange: control value greater than 128.0 ... setting to 128.0!"; handleError( StkError::WARNING ); } if (number == __SK_ReedStiffness_) // 2 reedTable_.setSlope( 0.1 + (0.4 * norm) ); else if (number == __SK_NoiseLevel_) // 4 noiseGain_ = ( norm * 0.4 ); else if (number == 29) // 29 vibrato_.setFrequency( norm * 12.0 ); else if (number == __SK_ModWheel_) // 1 vibratoGain_ = ( norm * 0.5 ); else if (number == __SK_AfterTouch_Cont_) // 128 envelope_.setValue( norm ); else if (number == 11) // 11 this->setBlowPosition( norm ); else if (number == 26) // reed table offset reedTable_.setOffset(0.4 + ( norm * 0.6)); else { errorString_ << "Saxofony::controlChange: undefined control number (" << number << ")!"; handleError( StkError::WARNING ); } #if defined(_STK_DEBUG_) errorString_ << "Saxofony::controlChange: number = " << number << ", value = " << value << "."; handleError( StkError::DEBUG_WARNING ); #endif }