#include "stdio.h" #ifndef mips #include "stdlib.h" #endif #include "xlisp.h" #include "sound.h" #include "falloc.h" #include "cext.h" #include "allpoles.h" void allpoles_free(); typedef struct allpoles_susp_struct { snd_susp_node susp; long terminate_cnt; boolean logically_stopped; sound_type x_snd; long x_snd_cnt; sample_block_values_type x_snd_ptr; long ak_len; LVAL ak_array; double gain; double *ak_coefs; double *zk_buf; long index; } allpoles_susp_node, *allpoles_susp_type; void allpoles_s_fetch(register allpoles_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register long ak_len_reg; register double gain_reg; register double * ak_coefs_reg; register double * zk_buf_reg; register long index_reg; register sample_type x_snd_scale_reg = susp->x_snd->scale; register sample_block_values_type x_snd_ptr_reg; falloc_sample_block(out, "allpoles_s_fetch"); out_ptr = out->samples; snd_list->block = out; while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the x_snd input sample block: */ susp_check_term_log_samples(x_snd, x_snd_ptr, x_snd_cnt); togo = min(togo, susp->x_snd_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = to_stop; } } if (susp->ak_array == NULL) { togo = 0; /* indicate termination */ break; /* we're done */ } else if (!vectorp(susp->ak_array)) xlerror("array expected", susp->ak_array); else if (susp->ak_coefs == NULL) { long i; susp->ak_len = getsize(susp->ak_array); if (susp->ak_len < 1) xlerror("array has not elements", susp->ak_array); susp->ak_coefs = (double *) calloc(susp->ak_len, sizeof(double)); susp->zk_buf = (double *) calloc(susp->ak_len, sizeof(double)); /* at this point we have a new array and a place to put ak coefs */ for(i=0; i < susp->ak_len; i++) { LVAL elem = getelement(susp->ak_array,i); if (ntype(elem) != FLONUM) { xlerror("flonum expected", elem); } susp->ak_coefs[i] = getflonum(elem); } } n = togo; ak_len_reg = susp->ak_len; gain_reg = susp->gain; ak_coefs_reg = susp->ak_coefs; zk_buf_reg = susp->zk_buf; index_reg = susp->index; x_snd_ptr_reg = susp->x_snd_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ double z0; long xi; long xj; z0 = (x_snd_scale_reg * *x_snd_ptr_reg++)*gain_reg; for (xi=0; xi < ak_len_reg ; xi++) { xj = index_reg + xi; if (xj >= ak_len_reg) xj -= ak_len_reg; z0 += ak_coefs_reg[xi] * zk_buf_reg[xj]; } zk_buf_reg[index_reg] = z0; index_reg++; if (index_reg == ak_len_reg) index_reg = 0; *out_ptr_reg++ = (sample_type) z0; ; } while (--n); /* inner loop */ susp->zk_buf = zk_buf_reg; susp->index = index_reg; /* using x_snd_ptr_reg is a bad idea on RS/6000: */ susp->x_snd_ptr += togo; out_ptr += togo; susp_took(x_snd_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; } } /* allpoles_s_fetch */ void allpoles_toss_fetch(susp, snd_list) register allpoles_susp_type susp; snd_list_type snd_list; { long final_count = susp->susp.toss_cnt; time_type final_time = susp->susp.t0; long n; /* fetch samples from x_snd up to final_time for this block of zeros */ while ((round((final_time - susp->x_snd->t0) * susp->x_snd->sr)) >= susp->x_snd->current) susp_get_samples(x_snd, x_snd_ptr, x_snd_cnt); /* convert to normal processing when we hit final_count */ /* we want each signal positioned at final_time */ n = round((final_time - susp->x_snd->t0) * susp->x_snd->sr - (susp->x_snd->current - susp->x_snd_cnt)); susp->x_snd_ptr += n; susp_took(x_snd_cnt, n); susp->susp.fetch = susp->susp.keep_fetch; (*(susp->susp.fetch))(susp, snd_list); } void allpoles_mark(allpoles_susp_type susp) { if (susp->ak_array) mark(susp->ak_array); sound_xlmark(susp->x_snd); } void allpoles_free(allpoles_susp_type susp) { free(susp->zk_buf); free(susp->ak_coefs); susp->ak_array = NULL; /* free array */ sound_unref(susp->x_snd); ffree_generic(susp, sizeof(allpoles_susp_node), "allpoles_free"); } void allpoles_print_tree(allpoles_susp_type susp, int n) { indent(n); stdputstr("x_snd:"); sound_print_tree_1(susp->x_snd, n); } sound_type snd_make_allpoles(sound_type x_snd, LVAL ak_array, double gain) { register allpoles_susp_type susp; rate_type sr = x_snd->sr; time_type t0 = x_snd->t0; int interp_desc = 0; sample_type scale_factor = 1.0F; time_type t0_min = t0; falloc_generic(susp, allpoles_susp_node, "snd_make_allpoles"); susp->ak_len = 0; susp->ak_array = ak_array; susp->gain = gain; susp->ak_coefs = NULL; susp->zk_buf = NULL; susp->index = 0; susp->susp.fetch = allpoles_s_fetch; susp->terminate_cnt = UNKNOWN; /* handle unequal start times, if any */ if (t0 < x_snd->t0) sound_prepend_zeros(x_snd, t0); /* minimum start time over all inputs: */ t0_min = min(x_snd->t0, t0); /* how many samples to toss before t0: */ susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5); if (susp->susp.toss_cnt > 0) { susp->susp.keep_fetch = susp->susp.fetch; susp->susp.fetch = allpoles_toss_fetch; } /* initialize susp state */ susp->susp.free = allpoles_free; susp->susp.sr = sr; susp->susp.t0 = t0; susp->susp.mark = allpoles_mark; susp->susp.print_tree = allpoles_print_tree; susp->susp.name = "allpoles"; susp->logically_stopped = false; susp->susp.log_stop_cnt = logical_stop_cnt_cvt(x_snd); susp->susp.current = 0; susp->x_snd = x_snd; susp->x_snd_cnt = 0; return sound_create((snd_susp_type)susp, t0, sr, scale_factor); } sound_type snd_allpoles(sound_type x_snd, LVAL ak_array, double gain) { sound_type x_snd_copy = sound_copy(x_snd); return snd_make_allpoles(x_snd_copy, ak_array, gain); }