#include "stdio.h" #ifndef mips #include "stdlib.h" #endif #include "xlisp.h" #include "sound.h" #include "falloc.h" #include "cext.h" #include "alpasscv.h" void alpasscv_free(); typedef struct alpasscv_susp_struct { snd_susp_node susp; long terminate_cnt; sound_type input; long input_cnt; sample_block_values_type input_ptr; sound_type feedback; long feedback_cnt; sample_block_values_type feedback_ptr; long delaylen; sample_type *delaybuf; sample_type *delayptr; sample_type *endptr; } alpasscv_susp_node, *alpasscv_susp_type; void alpasscv_nn_fetch(register alpasscv_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register sample_type * delayptr_reg; register sample_type * endptr_reg; register sample_block_values_type feedback_ptr_reg; register sample_block_values_type input_ptr_reg; falloc_sample_block(out, "alpasscv_nn_fetch"); out_ptr = out->samples; snd_list->block = out; while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the input input sample block: */ susp_check_term_samples(input, input_ptr, input_cnt); togo = min(togo, susp->input_cnt); /* don't run past the feedback input sample block: */ susp_check_samples(feedback, feedback_ptr, feedback_cnt); togo = min(togo, susp->feedback_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } n = togo; delayptr_reg = susp->delayptr; endptr_reg = susp->endptr; feedback_ptr_reg = susp->feedback_ptr; input_ptr_reg = susp->input_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ register sample_type y, z, fb; y = *delayptr_reg; *delayptr_reg++ = z = (sample_type) ((fb = *feedback_ptr_reg++) * y + *input_ptr_reg++); *out_ptr_reg++ = (sample_type) (y - fb * z); if (delayptr_reg >= endptr_reg) delayptr_reg = susp->delaybuf;; } while (--n); /* inner loop */ susp->delayptr = delayptr_reg; /* using feedback_ptr_reg is a bad idea on RS/6000: */ susp->feedback_ptr += togo; /* using input_ptr_reg is a bad idea on RS/6000: */ susp->input_ptr += togo; out_ptr += togo; susp_took(input_cnt, togo); susp_took(feedback_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } } /* alpasscv_nn_fetch */ void alpasscv_ns_fetch(register alpasscv_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register sample_type * delayptr_reg; register sample_type * endptr_reg; register sample_type feedback_scale_reg = susp->feedback->scale; register sample_block_values_type feedback_ptr_reg; register sample_block_values_type input_ptr_reg; falloc_sample_block(out, "alpasscv_ns_fetch"); out_ptr = out->samples; snd_list->block = out; while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the input input sample block: */ susp_check_term_samples(input, input_ptr, input_cnt); togo = min(togo, susp->input_cnt); /* don't run past the feedback input sample block: */ susp_check_samples(feedback, feedback_ptr, feedback_cnt); togo = min(togo, susp->feedback_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } n = togo; delayptr_reg = susp->delayptr; endptr_reg = susp->endptr; feedback_ptr_reg = susp->feedback_ptr; input_ptr_reg = susp->input_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ register sample_type y, z, fb; y = *delayptr_reg; *delayptr_reg++ = z = (sample_type) ((fb = (feedback_scale_reg * *feedback_ptr_reg++)) * y + *input_ptr_reg++); *out_ptr_reg++ = (sample_type) (y - fb * z); if (delayptr_reg >= endptr_reg) delayptr_reg = susp->delaybuf;; } while (--n); /* inner loop */ susp->delayptr = delayptr_reg; /* using feedback_ptr_reg is a bad idea on RS/6000: */ susp->feedback_ptr += togo; /* using input_ptr_reg is a bad idea on RS/6000: */ susp->input_ptr += togo; out_ptr += togo; susp_took(input_cnt, togo); susp_took(feedback_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } } /* alpasscv_ns_fetch */ void alpasscv_toss_fetch(susp, snd_list) register alpasscv_susp_type susp; snd_list_type snd_list; { long final_count = susp->susp.toss_cnt; time_type final_time = susp->susp.t0; long n; /* fetch samples from input up to final_time for this block of zeros */ while ((round((final_time - susp->input->t0) * susp->input->sr)) >= susp->input->current) susp_get_samples(input, input_ptr, input_cnt); /* fetch samples from feedback up to final_time for this block of zeros */ while ((round((final_time - susp->feedback->t0) * susp->feedback->sr)) >= susp->feedback->current) susp_get_samples(feedback, feedback_ptr, feedback_cnt); /* convert to normal processing when we hit final_count */ /* we want each signal positioned at final_time */ n = round((final_time - susp->input->t0) * susp->input->sr - (susp->input->current - susp->input_cnt)); susp->input_ptr += n; susp_took(input_cnt, n); n = round((final_time - susp->feedback->t0) * susp->feedback->sr - (susp->feedback->current - susp->feedback_cnt)); susp->feedback_ptr += n; susp_took(feedback_cnt, n); susp->susp.fetch = susp->susp.keep_fetch; (*(susp->susp.fetch))(susp, snd_list); } void alpasscv_mark(alpasscv_susp_type susp) { sound_xlmark(susp->input); sound_xlmark(susp->feedback); } void alpasscv_free(alpasscv_susp_type susp) { free(susp->delaybuf); sound_unref(susp->input); sound_unref(susp->feedback); ffree_generic(susp, sizeof(alpasscv_susp_node), "alpasscv_free"); } void alpasscv_print_tree(alpasscv_susp_type susp, int n) { indent(n); stdputstr("input:"); sound_print_tree_1(susp->input, n); indent(n); stdputstr("feedback:"); sound_print_tree_1(susp->feedback, n); } sound_type snd_make_alpasscv(sound_type input, time_type delay, sound_type feedback) { register alpasscv_susp_type susp; rate_type sr = max(input->sr, feedback->sr); time_type t0 = max(input->t0, feedback->t0); int interp_desc = 0; sample_type scale_factor = 1.0F; time_type t0_min = t0; /* combine scale factors of linear inputs (INPUT) */ scale_factor *= input->scale; input->scale = 1.0F; /* try to push scale_factor back to a low sr input */ if (input->sr < sr) { input->scale = scale_factor; scale_factor = 1.0F; } falloc_generic(susp, alpasscv_susp_node, "snd_make_alpasscv"); susp->delaylen = max(1, round(input->sr * delay)); susp->delaybuf = (sample_type *) calloc (susp->delaylen, sizeof(sample_type)); susp->delayptr = susp->delaybuf; susp->endptr = susp->delaybuf + susp->delaylen; /* select a susp fn based on sample rates */ interp_desc = (interp_desc << 2) + interp_style(input, sr); interp_desc = (interp_desc << 2) + interp_style(feedback, sr); switch (interp_desc) { case INTERP_nn: susp->susp.fetch = alpasscv_nn_fetch; break; case INTERP_ns: susp->susp.fetch = alpasscv_ns_fetch; break; default: snd_badsr(); break; } susp->terminate_cnt = UNKNOWN; /* handle unequal start times, if any */ if (t0 < input->t0) sound_prepend_zeros(input, t0); if (t0 < feedback->t0) sound_prepend_zeros(feedback, t0); /* minimum start time over all inputs: */ t0_min = min(input->t0, min(feedback->t0, t0)); /* how many samples to toss before t0: */ susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5); if (susp->susp.toss_cnt > 0) { susp->susp.keep_fetch = susp->susp.fetch; susp->susp.fetch = alpasscv_toss_fetch; } /* initialize susp state */ susp->susp.free = alpasscv_free; susp->susp.sr = sr; susp->susp.t0 = t0; susp->susp.mark = alpasscv_mark; susp->susp.print_tree = alpasscv_print_tree; susp->susp.name = "alpasscv"; susp->susp.log_stop_cnt = UNKNOWN; susp->susp.current = 0; susp->input = input; susp->input_cnt = 0; susp->feedback = feedback; susp->feedback_cnt = 0; return sound_create((snd_susp_type)susp, t0, sr, scale_factor); } sound_type snd_alpasscv(sound_type input, time_type delay, sound_type feedback) { sound_type input_copy = sound_copy(input); sound_type feedback_copy = sound_copy(feedback); return snd_make_alpasscv(input_copy, delay, feedback_copy); }