#include "stdio.h" #ifndef mips #include "stdlib.h" #endif #include "xlisp.h" #include "sound.h" #include "falloc.h" #include "cext.h" #include "amosc.h" void amosc_free(); typedef struct amosc_susp_struct { snd_susp_node susp; long terminate_cnt; boolean logically_stopped; sound_type amod; long amod_cnt; sample_block_values_type amod_ptr; double ph_incr; table_type the_table; sample_type *table_ptr; double table_len; double phase; } amosc_susp_node, *amosc_susp_type; void amosc_s_fetch(register amosc_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register double ph_incr_reg; register sample_type * table_ptr_reg; register double table_len_reg; register double phase_reg; register sample_type amod_scale_reg = susp->amod->scale; register sample_block_values_type amod_ptr_reg; falloc_sample_block(out, "amosc_s_fetch"); out_ptr = out->samples; snd_list->block = out; while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the amod input sample block: */ susp_check_term_log_samples(amod, amod_ptr, amod_cnt); togo = min(togo, susp->amod_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = to_stop; } } n = togo; ph_incr_reg = susp->ph_incr; table_ptr_reg = susp->table_ptr; table_len_reg = susp->table_len; phase_reg = susp->phase; amod_ptr_reg = susp->amod_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ long table_index = (long) phase_reg; double x1 = (double) (table_ptr_reg[table_index]); *out_ptr_reg++ = (sample_type) (x1 + (phase_reg - table_index) * (table_ptr_reg[table_index + 1] - x1)) * (amod_scale_reg * *amod_ptr_reg++); phase_reg += ph_incr_reg; while (phase_reg > table_len_reg) phase_reg -= table_len_reg; ; } while (--n); /* inner loop */ susp->phase = phase_reg; /* using amod_ptr_reg is a bad idea on RS/6000: */ susp->amod_ptr += togo; out_ptr += togo; susp_took(amod_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; } } /* amosc_s_fetch */ void amosc_toss_fetch(susp, snd_list) register amosc_susp_type susp; snd_list_type snd_list; { long final_count = susp->susp.toss_cnt; time_type final_time = susp->susp.t0; long n; /* fetch samples from amod up to final_time for this block of zeros */ while ((round((final_time - susp->amod->t0) * susp->amod->sr)) >= susp->amod->current) susp_get_samples(amod, amod_ptr, amod_cnt); /* convert to normal processing when we hit final_count */ /* we want each signal positioned at final_time */ n = round((final_time - susp->amod->t0) * susp->amod->sr - (susp->amod->current - susp->amod_cnt)); susp->amod_ptr += n; susp_took(amod_cnt, n); susp->susp.fetch = susp->susp.keep_fetch; (*(susp->susp.fetch))(susp, snd_list); } void amosc_mark(amosc_susp_type susp) { sound_xlmark(susp->amod); } void amosc_free(amosc_susp_type susp) { table_unref(susp->the_table); sound_unref(susp->amod); ffree_generic(susp, sizeof(amosc_susp_node), "amosc_free"); } void amosc_print_tree(amosc_susp_type susp, int n) { indent(n); stdputstr("amod:"); sound_print_tree_1(susp->amod, n); } sound_type snd_make_amosc(sound_type input, double step, rate_type sr, double hz, time_type t0, sound_type amod, double phase) { register amosc_susp_type susp; /* sr specified as input parameter */ /* t0 specified as input parameter */ int interp_desc = 0; sample_type scale_factor = 1.0F; time_type t0_min = t0; falloc_generic(susp, amosc_susp_node, "snd_make_amosc"); susp->ph_incr = 0; susp->the_table = sound_to_table(input); susp->table_ptr = susp->the_table->samples; susp->table_len = susp->the_table->length; susp->phase = compute_phase(phase, step, (long) susp->table_len, input->sr, sr, hz, &susp->ph_incr); susp->susp.fetch = amosc_s_fetch; susp->terminate_cnt = UNKNOWN; /* handle unequal start times, if any */ if (t0 < amod->t0) sound_prepend_zeros(amod, t0); /* minimum start time over all inputs: */ t0_min = min(amod->t0, t0); /* how many samples to toss before t0: */ susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5); if (susp->susp.toss_cnt > 0) { susp->susp.keep_fetch = susp->susp.fetch; susp->susp.fetch = amosc_toss_fetch; } /* initialize susp state */ susp->susp.free = amosc_free; susp->susp.sr = sr; susp->susp.t0 = t0; susp->susp.mark = amosc_mark; susp->susp.print_tree = amosc_print_tree; susp->susp.name = "amosc"; susp->logically_stopped = false; susp->susp.log_stop_cnt = logical_stop_cnt_cvt(amod); susp->susp.current = 0; susp->amod = amod; susp->amod_cnt = 0; return sound_create((snd_susp_type)susp, t0, sr, scale_factor); } sound_type snd_amosc(sound_type input, double step, rate_type sr, double hz, time_type t0, sound_type amod, double phase) { sound_type amod_copy = sound_copy(amod); return snd_make_amosc(input, step, sr, hz, t0, amod_copy, phase); }