#include "stdio.h" #ifndef mips #include "stdlib.h" #endif #include "xlisp.h" #include "sound.h" #include "falloc.h" #include "cext.h" #include "biquadfilt.h" void biquadfilt_free(); typedef struct biquadfilt_susp_struct { snd_susp_node susp; long terminate_cnt; boolean logically_stopped; sound_type s; long s_cnt; sample_block_values_type s_ptr; double z1; double z2; double b0; double b1; double b2; double a1; double a2; } biquadfilt_susp_node, *biquadfilt_susp_type; void biquadfilt_n_fetch(register biquadfilt_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register double z1_reg; register double z2_reg; register double b0_reg; register double b1_reg; register double b2_reg; register double a1_reg; register double a2_reg; register sample_block_values_type s_ptr_reg; falloc_sample_block(out, "biquadfilt_n_fetch"); out_ptr = out->samples; snd_list->block = out; while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the s input sample block: */ susp_check_term_log_samples(s, s_ptr, s_cnt); togo = min(togo, susp->s_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = to_stop; } } n = togo; z1_reg = susp->z1; z2_reg = susp->z2; b0_reg = susp->b0; b1_reg = susp->b1; b2_reg = susp->b2; a1_reg = susp->a1; a2_reg = susp->a2; s_ptr_reg = susp->s_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ double z0; z0 = *s_ptr_reg++ + a1_reg*z1_reg + a2_reg*z2_reg; *out_ptr_reg++ = (sample_type) (z0*b0_reg + z1_reg*b1_reg + z2_reg*b2_reg); z2_reg = z1_reg; z1_reg = z0;; } while (--n); /* inner loop */ susp->z1 = z1_reg; susp->z2 = z2_reg; /* using s_ptr_reg is a bad idea on RS/6000: */ susp->s_ptr += togo; out_ptr += togo; susp_took(s_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; } } /* biquadfilt_n_fetch */ void biquadfilt_s_fetch(register biquadfilt_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register double z1_reg; register double z2_reg; register double b0_reg; register double b1_reg; register double b2_reg; register double a1_reg; register double a2_reg; register sample_type s_scale_reg = susp->s->scale; register sample_block_values_type s_ptr_reg; falloc_sample_block(out, "biquadfilt_s_fetch"); out_ptr = out->samples; snd_list->block = out; while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the s input sample block: */ susp_check_term_log_samples(s, s_ptr, s_cnt); togo = min(togo, susp->s_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = to_stop; } } n = togo; z1_reg = susp->z1; z2_reg = susp->z2; b0_reg = susp->b0; b1_reg = susp->b1; b2_reg = susp->b2; a1_reg = susp->a1; a2_reg = susp->a2; s_ptr_reg = susp->s_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ double z0; z0 = (s_scale_reg * *s_ptr_reg++) + a1_reg*z1_reg + a2_reg*z2_reg; *out_ptr_reg++ = (sample_type) (z0*b0_reg + z1_reg*b1_reg + z2_reg*b2_reg); z2_reg = z1_reg; z1_reg = z0;; } while (--n); /* inner loop */ susp->z1 = z1_reg; susp->z2 = z2_reg; /* using s_ptr_reg is a bad idea on RS/6000: */ susp->s_ptr += togo; out_ptr += togo; susp_took(s_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; } } /* biquadfilt_s_fetch */ void biquadfilt_toss_fetch(susp, snd_list) register biquadfilt_susp_type susp; snd_list_type snd_list; { long final_count = susp->susp.toss_cnt; time_type final_time = susp->susp.t0; long n; /* fetch samples from s up to final_time for this block of zeros */ while ((round((final_time - susp->s->t0) * susp->s->sr)) >= susp->s->current) susp_get_samples(s, s_ptr, s_cnt); /* convert to normal processing when we hit final_count */ /* we want each signal positioned at final_time */ n = round((final_time - susp->s->t0) * susp->s->sr - (susp->s->current - susp->s_cnt)); susp->s_ptr += n; susp_took(s_cnt, n); susp->susp.fetch = susp->susp.keep_fetch; (*(susp->susp.fetch))(susp, snd_list); } void biquadfilt_mark(biquadfilt_susp_type susp) { sound_xlmark(susp->s); } void biquadfilt_free(biquadfilt_susp_type susp) { sound_unref(susp->s); ffree_generic(susp, sizeof(biquadfilt_susp_node), "biquadfilt_free"); } void biquadfilt_print_tree(biquadfilt_susp_type susp, int n) { indent(n); stdputstr("s:"); sound_print_tree_1(susp->s, n); } sound_type snd_make_biquadfilt(sound_type s, double b0, double b1, double b2, double a1, double a2, double z1init, double z2init) { register biquadfilt_susp_type susp; rate_type sr = s->sr; time_type t0 = s->t0; int interp_desc = 0; sample_type scale_factor = 1.0F; time_type t0_min = t0; falloc_generic(susp, biquadfilt_susp_node, "snd_make_biquadfilt"); susp->z1 = z1init; susp->z2 = z2init; susp->b0 = b0; susp->b1 = b1; susp->b2 = b2; susp->a1 = a1; susp->a2 = a2; /* select a susp fn based on sample rates */ interp_desc = (interp_desc << 2) + interp_style(s, sr); switch (interp_desc) { case INTERP_n: susp->susp.fetch = biquadfilt_n_fetch; break; case INTERP_s: susp->susp.fetch = biquadfilt_s_fetch; break; default: snd_badsr(); break; } susp->terminate_cnt = UNKNOWN; /* handle unequal start times, if any */ if (t0 < s->t0) sound_prepend_zeros(s, t0); /* minimum start time over all inputs: */ t0_min = min(s->t0, t0); /* how many samples to toss before t0: */ susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5); if (susp->susp.toss_cnt > 0) { susp->susp.keep_fetch = susp->susp.fetch; susp->susp.fetch = biquadfilt_toss_fetch; } /* initialize susp state */ susp->susp.free = biquadfilt_free; susp->susp.sr = sr; susp->susp.t0 = t0; susp->susp.mark = biquadfilt_mark; susp->susp.print_tree = biquadfilt_print_tree; susp->susp.name = "biquadfilt"; susp->logically_stopped = false; susp->susp.log_stop_cnt = logical_stop_cnt_cvt(s); susp->susp.current = 0; susp->s = s; susp->s_cnt = 0; return sound_create((snd_susp_type)susp, t0, sr, scale_factor); } sound_type snd_biquadfilt(sound_type s, double b0, double b1, double b2, double a1, double a2, double z1init, double z2init) { sound_type s_copy = sound_copy(s); return snd_make_biquadfilt(s_copy, b0, b1, b2, a1, a2, z1init, z2init); }