#include "stdio.h" #ifndef mips #include "stdlib.h" #endif #include "xlisp.h" #include "sound.h" #include "falloc.h" #include "cext.h" #include "eqbandvvv.h" void eqbandvvv_free(); typedef struct eqbandvvv_susp_struct { snd_susp_node susp; boolean started; long terminate_cnt; boolean logically_stopped; sound_type input; long input_cnt; sample_block_values_type input_ptr; sound_type hz; long hz_cnt; sample_block_values_type hz_ptr; /* support for interpolation of hz */ sample_type hz_x1_sample; double hz_pHaSe; double hz_pHaSe_iNcR; /* support for ramp between samples of hz */ double output_per_hz; long hz_n; sound_type gain; long gain_cnt; sample_block_values_type gain_ptr; /* support for interpolation of gain */ sample_type gain_x1_sample; double gain_pHaSe; double gain_pHaSe_iNcR; /* support for ramp between samples of gain */ double output_per_gain; long gain_n; sound_type width; long width_cnt; sample_block_values_type width_ptr; /* support for interpolation of width */ sample_type width_x1_sample; double width_pHaSe; double width_pHaSe_iNcR; /* support for ramp between samples of width */ double output_per_width; long width_n; double inp_scale; double w1; double sw; double cw; double J; double gg; double b0; double b1; double b2; double a0; double a1; double a2; double z1; double z2; boolean recompute; double inp_period; } eqbandvvv_susp_node, *eqbandvvv_susp_type; #define log_of_2_over_2 0.3465735902799726547086 void eqbandvvv_ssss_fetch(register eqbandvvv_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register double w1_reg; register double sw_reg; register double cw_reg; register double J_reg; register double gg_reg; register double b0_reg; register double b1_reg; register double b2_reg; register double a0_reg; register double a1_reg; register double a2_reg; register double z1_reg; register double z2_reg; register boolean recompute_reg; register double inp_period_reg; register sample_type width_scale_reg = susp->width->scale; register sample_block_values_type width_ptr_reg; register sample_type gain_scale_reg = susp->gain->scale; register sample_block_values_type gain_ptr_reg; register sample_type hz_scale_reg = susp->hz->scale; register sample_block_values_type hz_ptr_reg; register sample_type input_scale_reg = susp->input->scale; register sample_block_values_type input_ptr_reg; falloc_sample_block(out, "eqbandvvv_ssss_fetch"); out_ptr = out->samples; snd_list->block = out; while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the input input sample block: */ susp_check_term_log_samples(input, input_ptr, input_cnt); togo = min(togo, susp->input_cnt); /* don't run past the hz input sample block: */ susp_check_term_log_samples(hz, hz_ptr, hz_cnt); togo = min(togo, susp->hz_cnt); /* don't run past the gain input sample block: */ susp_check_term_log_samples(gain, gain_ptr, gain_cnt); togo = min(togo, susp->gain_cnt); /* don't run past the width input sample block: */ susp_check_term_log_samples(width, width_ptr, width_cnt); togo = min(togo, susp->width_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = to_stop; } } n = togo; w1_reg = susp->w1; sw_reg = susp->sw; cw_reg = susp->cw; J_reg = susp->J; gg_reg = susp->gg; b0_reg = susp->b0; b1_reg = susp->b1; b2_reg = susp->b2; a0_reg = susp->a0; a1_reg = susp->a1; a2_reg = susp->a2; z1_reg = susp->z1; z2_reg = susp->z2; recompute_reg = susp->recompute; inp_period_reg = susp->inp_period; width_ptr_reg = susp->width_ptr; gain_ptr_reg = susp->gain_ptr; hz_ptr_reg = susp->hz_ptr; input_ptr_reg = susp->input_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ double z0; w1_reg = PI2 * (hz_scale_reg * *hz_ptr_reg++) * inp_period_reg; sw_reg = sin(w1_reg); cw_reg = cos(w1_reg); b1_reg = -2.0 * cw_reg; a1_reg = -b1_reg; J_reg = sqrt((gain_scale_reg * *gain_ptr_reg++)); recompute_reg = true; recompute_reg = true; recompute_reg = true; if (recompute_reg) { /* a0_reg = 1.0 + gg_reg / J_reg; */ double a_0_recip = J_reg / (J_reg + gg_reg); recompute_reg = false; gg_reg = sw_reg * sinh(log_of_2_over_2 * (width_scale_reg * *width_ptr_reg++) * w1_reg / sw_reg); b0_reg = (1.0 + gg_reg * J_reg) * a_0_recip; b1_reg *= a_0_recip; b2_reg = (1.0 - gg_reg * J_reg) * a_0_recip; a1_reg *= a_0_recip; a2_reg = (gg_reg / J_reg - 1.0) * a_0_recip; } z0 = (input_scale_reg * *input_ptr_reg++) + a1_reg*z1_reg + a2_reg*z2_reg; *out_ptr_reg++ = (sample_type) (z0*b0_reg + z1_reg*b1_reg + z2_reg*b2_reg); z2_reg = z1_reg; z1_reg = z0;; } while (--n); /* inner loop */ susp->z1 = z1_reg; susp->z2 = z2_reg; susp->recompute = recompute_reg; /* using width_ptr_reg is a bad idea on RS/6000: */ susp->width_ptr += togo; /* using gain_ptr_reg is a bad idea on RS/6000: */ susp->gain_ptr += togo; /* using hz_ptr_reg is a bad idea on RS/6000: */ susp->hz_ptr += togo; /* using input_ptr_reg is a bad idea on RS/6000: */ susp->input_ptr += togo; out_ptr += togo; susp_took(input_cnt, togo); susp_took(hz_cnt, togo); susp_took(gain_cnt, togo); susp_took(width_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; } } /* eqbandvvv_ssss_fetch */ void eqbandvvv_siii_fetch(register eqbandvvv_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register double w1_reg; register double sw_reg; register double cw_reg; register double J_reg; register double gg_reg; register double b0_reg; register double b1_reg; register double b2_reg; register double a0_reg; register double a1_reg; register double a2_reg; register double z1_reg; register double z2_reg; register boolean recompute_reg; register double inp_period_reg; register double width_pHaSe_iNcR_rEg = susp->width_pHaSe_iNcR; register double width_pHaSe_ReG; register sample_type width_x1_sample_reg; register double gain_pHaSe_iNcR_rEg = susp->gain_pHaSe_iNcR; register double gain_pHaSe_ReG; register sample_type gain_x1_sample_reg; register double hz_pHaSe_iNcR_rEg = susp->hz_pHaSe_iNcR; register double hz_pHaSe_ReG; register sample_type hz_x1_sample_reg; register sample_type input_scale_reg = susp->input->scale; register sample_block_values_type input_ptr_reg; falloc_sample_block(out, "eqbandvvv_siii_fetch"); out_ptr = out->samples; snd_list->block = out; /* make sure sounds are primed with first values */ if (!susp->started) { susp->started = true; susp_check_term_log_samples(hz, hz_ptr, hz_cnt); susp->hz_x1_sample = susp_fetch_sample(hz, hz_ptr, hz_cnt); susp->w1 = PI2 * susp->hz_x1_sample * susp->inp_period; susp->sw = sin(susp->w1); susp->cw = cos(susp->w1); susp->b1 = -2.0 * susp->cw; susp->a1 = -susp->b1; susp->recompute = true; susp_check_term_log_samples(gain, gain_ptr, gain_cnt); susp->gain_x1_sample = susp_fetch_sample(gain, gain_ptr, gain_cnt); susp->J = sqrt(susp->gain_x1_sample); susp->recompute = true; susp_check_term_log_samples(width, width_ptr, width_cnt); susp->width_x1_sample = susp_fetch_sample(width, width_ptr, width_cnt); susp->recompute = true; } while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the input input sample block: */ susp_check_term_log_samples(input, input_ptr, input_cnt); togo = min(togo, susp->input_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = to_stop; } } n = togo; w1_reg = susp->w1; sw_reg = susp->sw; cw_reg = susp->cw; J_reg = susp->J; gg_reg = susp->gg; b0_reg = susp->b0; b1_reg = susp->b1; b2_reg = susp->b2; a0_reg = susp->a0; a1_reg = susp->a1; a2_reg = susp->a2; z1_reg = susp->z1; z2_reg = susp->z2; recompute_reg = susp->recompute; inp_period_reg = susp->inp_period; width_pHaSe_ReG = susp->width_pHaSe; width_x1_sample_reg = susp->width_x1_sample; gain_pHaSe_ReG = susp->gain_pHaSe; gain_x1_sample_reg = susp->gain_x1_sample; hz_pHaSe_ReG = susp->hz_pHaSe; hz_x1_sample_reg = susp->hz_x1_sample; input_ptr_reg = susp->input_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ double z0; if (hz_pHaSe_ReG >= 1.0) { /* fixup-depends hz */ /* pick up next sample as hz_x1_sample: */ susp->hz_ptr++; susp_took(hz_cnt, 1); hz_pHaSe_ReG -= 1.0; susp_check_term_log_samples_break(hz, hz_ptr, hz_cnt, hz_x1_sample_reg); hz_x1_sample_reg = susp_current_sample(hz, hz_ptr); w1_reg = susp->w1 = PI2 * hz_x1_sample_reg * inp_period_reg; sw_reg = susp->sw = sin(w1_reg); cw_reg = susp->cw = cos(w1_reg); b1_reg = susp->b1 = -2.0 * cw_reg; a1_reg = susp->a1 = -b1_reg; recompute_reg = susp->recompute = true; } if (gain_pHaSe_ReG >= 1.0) { /* fixup-depends gain */ /* pick up next sample as gain_x1_sample: */ susp->gain_ptr++; susp_took(gain_cnt, 1); gain_pHaSe_ReG -= 1.0; susp_check_term_log_samples_break(gain, gain_ptr, gain_cnt, gain_x1_sample_reg); gain_x1_sample_reg = susp_current_sample(gain, gain_ptr); J_reg = susp->J = sqrt(gain_x1_sample_reg); recompute_reg = susp->recompute = true; } if (width_pHaSe_ReG >= 1.0) { /* fixup-depends width */ /* pick up next sample as width_x1_sample: */ susp->width_ptr++; susp_took(width_cnt, 1); width_pHaSe_ReG -= 1.0; susp_check_term_log_samples_break(width, width_ptr, width_cnt, width_x1_sample_reg); width_x1_sample_reg = susp_current_sample(width, width_ptr); recompute_reg = susp->recompute = true; } if (recompute_reg) { /* a0_reg = 1.0 + gg_reg / J_reg; */ double a_0_recip = J_reg / (J_reg + gg_reg); recompute_reg = false; gg_reg = sw_reg * sinh(log_of_2_over_2 * width_x1_sample_reg * w1_reg / sw_reg); b0_reg = (1.0 + gg_reg * J_reg) * a_0_recip; b1_reg *= a_0_recip; b2_reg = (1.0 - gg_reg * J_reg) * a_0_recip; a1_reg *= a_0_recip; a2_reg = (gg_reg / J_reg - 1.0) * a_0_recip; } z0 = (input_scale_reg * *input_ptr_reg++) + a1_reg*z1_reg + a2_reg*z2_reg; *out_ptr_reg++ = (sample_type) (z0*b0_reg + z1_reg*b1_reg + z2_reg*b2_reg); z2_reg = z1_reg; z1_reg = z0;; hz_pHaSe_ReG += hz_pHaSe_iNcR_rEg; gain_pHaSe_ReG += gain_pHaSe_iNcR_rEg; width_pHaSe_ReG += width_pHaSe_iNcR_rEg; } while (--n); /* inner loop */ togo -= n; susp->z1 = z1_reg; susp->z2 = z2_reg; susp->recompute = recompute_reg; susp->width_pHaSe = width_pHaSe_ReG; susp->width_x1_sample = width_x1_sample_reg; susp->gain_pHaSe = gain_pHaSe_ReG; susp->gain_x1_sample = gain_x1_sample_reg; susp->hz_pHaSe = hz_pHaSe_ReG; susp->hz_x1_sample = hz_x1_sample_reg; /* using input_ptr_reg is a bad idea on RS/6000: */ susp->input_ptr += togo; out_ptr += togo; susp_took(input_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; } } /* eqbandvvv_siii_fetch */ void eqbandvvv_srrr_fetch(register eqbandvvv_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ sample_type hz_val; sample_type gain_val; sample_type width_val; int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register double cw_reg; register double b0_reg; register double b1_reg; register double b2_reg; register double a1_reg; register double a2_reg; register double z1_reg; register double z2_reg; register boolean recompute_reg; register double inp_period_reg; register sample_type input_scale_reg = susp->input->scale; register sample_block_values_type input_ptr_reg; falloc_sample_block(out, "eqbandvvv_srrr_fetch"); out_ptr = out->samples; snd_list->block = out; /* make sure sounds are primed with first values */ if (!susp->started) { susp->started = true; susp->hz_pHaSe = 1.0; susp->gain_pHaSe = 1.0; susp->width_pHaSe = 1.0; } susp_check_term_log_samples(hz, hz_ptr, hz_cnt); susp_check_term_log_samples(gain, gain_ptr, gain_cnt); susp_check_term_log_samples(width, width_ptr, width_cnt); while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the input input sample block: */ susp_check_term_log_samples(input, input_ptr, input_cnt); togo = min(togo, susp->input_cnt); /* grab next hz_x1_sample when phase goes past 1.0; */ /* use hz_n (computed below) to avoid roundoff errors: */ if (susp->hz_n <= 0) { susp_check_term_log_samples(hz, hz_ptr, hz_cnt); susp->hz_x1_sample = susp_fetch_sample(hz, hz_ptr, hz_cnt); susp->hz_pHaSe -= 1.0; /* hz_n gets number of samples before phase exceeds 1.0: */ susp->hz_n = (long) ((1.0 - susp->hz_pHaSe) * susp->output_per_hz); susp->w1 = PI2 * susp->hz_x1_sample * susp->inp_period; susp->sw = sin(susp->w1); susp->cw = cos(susp->w1); susp->b1 = -2.0 * susp->cw; susp->a1 = -susp->b1; susp->recompute = true; } togo = min(togo, susp->hz_n); hz_val = susp->hz_x1_sample; /* grab next gain_x1_sample when phase goes past 1.0; */ /* use gain_n (computed below) to avoid roundoff errors: */ if (susp->gain_n <= 0) { susp_check_term_log_samples(gain, gain_ptr, gain_cnt); susp->gain_x1_sample = susp_fetch_sample(gain, gain_ptr, gain_cnt); susp->gain_pHaSe -= 1.0; /* gain_n gets number of samples before phase exceeds 1.0: */ susp->gain_n = (long) ((1.0 - susp->gain_pHaSe) * susp->output_per_gain); susp->J = sqrt(susp->gain_x1_sample); susp->recompute = true; } togo = min(togo, susp->gain_n); gain_val = susp->gain_x1_sample; /* grab next width_x1_sample when phase goes past 1.0; */ /* use width_n (computed below) to avoid roundoff errors: */ if (susp->width_n <= 0) { susp_check_term_log_samples(width, width_ptr, width_cnt); susp->width_x1_sample = susp_fetch_sample(width, width_ptr, width_cnt); susp->width_pHaSe -= 1.0; /* width_n gets number of samples before phase exceeds 1.0: */ susp->width_n = (long) ((1.0 - susp->width_pHaSe) * susp->output_per_width); susp->recompute = true; } togo = min(togo, susp->width_n); width_val = susp->width_x1_sample; if (susp->recompute) { /* susp->a0 = 1.0 + susp->gg / susp->J; */ double a_0_recip = susp->J / (susp->J + susp->gg); susp->recompute = false; susp->gg = susp->sw * sinh(log_of_2_over_2 * width_val * susp->w1 / susp->sw); susp->b0 = (1.0 + susp->gg * susp->J) * a_0_recip; susp->b1 *= a_0_recip; susp->b2 = (1.0 - susp->gg * susp->J) * a_0_recip; susp->a1 *= a_0_recip; susp->a2 = (susp->gg / susp->J - 1.0) * a_0_recip; } /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = to_stop; } } n = togo; cw_reg = susp->cw; b0_reg = susp->b0; b1_reg = susp->b1; b2_reg = susp->b2; a1_reg = susp->a1; a2_reg = susp->a2; z1_reg = susp->z1; z2_reg = susp->z2; recompute_reg = susp->recompute; inp_period_reg = susp->inp_period; input_ptr_reg = susp->input_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ double z0; z0 = (input_scale_reg * *input_ptr_reg++) + a1_reg*z1_reg + a2_reg*z2_reg; *out_ptr_reg++ = (sample_type) (z0*b0_reg + z1_reg*b1_reg + z2_reg*b2_reg); z2_reg = z1_reg; z1_reg = z0;; } while (--n); /* inner loop */ susp->z1 = z1_reg; susp->z2 = z2_reg; susp->recompute = recompute_reg; /* using input_ptr_reg is a bad idea on RS/6000: */ susp->input_ptr += togo; out_ptr += togo; susp_took(input_cnt, togo); susp->hz_pHaSe += togo * susp->hz_pHaSe_iNcR; susp->hz_n -= togo; susp->gain_pHaSe += togo * susp->gain_pHaSe_iNcR; susp->gain_n -= togo; susp->width_pHaSe += togo * susp->width_pHaSe_iNcR; susp->width_n -= togo; cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; } } /* eqbandvvv_srrr_fetch */ void eqbandvvv_toss_fetch(susp, snd_list) register eqbandvvv_susp_type susp; snd_list_type snd_list; { time_type final_time = susp->susp.t0; long n; /* fetch samples from input up to final_time for this block of zeros */ while ((round((final_time - susp->input->t0) * susp->input->sr)) >= susp->input->current) susp_get_samples(input, input_ptr, input_cnt); /* fetch samples from hz up to final_time for this block of zeros */ while ((round((final_time - susp->hz->t0) * susp->hz->sr)) >= susp->hz->current) susp_get_samples(hz, hz_ptr, hz_cnt); /* fetch samples from gain up to final_time for this block of zeros */ while ((round((final_time - susp->gain->t0) * susp->gain->sr)) >= susp->gain->current) susp_get_samples(gain, gain_ptr, gain_cnt); /* fetch samples from width up to final_time for this block of zeros */ while ((round((final_time - susp->width->t0) * susp->width->sr)) >= susp->width->current) susp_get_samples(width, width_ptr, width_cnt); /* convert to normal processing when we hit final_count */ /* we want each signal positioned at final_time */ n = round((final_time - susp->input->t0) * susp->input->sr - (susp->input->current - susp->input_cnt)); susp->input_ptr += n; susp_took(input_cnt, n); n = round((final_time - susp->hz->t0) * susp->hz->sr - (susp->hz->current - susp->hz_cnt)); susp->hz_ptr += n; susp_took(hz_cnt, n); n = round((final_time - susp->gain->t0) * susp->gain->sr - (susp->gain->current - susp->gain_cnt)); susp->gain_ptr += n; susp_took(gain_cnt, n); n = round((final_time - susp->width->t0) * susp->width->sr - (susp->width->current - susp->width_cnt)); susp->width_ptr += n; susp_took(width_cnt, n); susp->susp.fetch = susp->susp.keep_fetch; (*(susp->susp.fetch))(susp, snd_list); } void eqbandvvv_mark(eqbandvvv_susp_type susp) { sound_xlmark(susp->input); sound_xlmark(susp->hz); sound_xlmark(susp->gain); sound_xlmark(susp->width); } void eqbandvvv_free(eqbandvvv_susp_type susp) { sound_unref(susp->input); sound_unref(susp->hz); sound_unref(susp->gain); sound_unref(susp->width); ffree_generic(susp, sizeof(eqbandvvv_susp_node), "eqbandvvv_free"); } void eqbandvvv_print_tree(eqbandvvv_susp_type susp, int n) { indent(n); stdputstr("input:"); sound_print_tree_1(susp->input, n); indent(n); stdputstr("hz:"); sound_print_tree_1(susp->hz, n); indent(n); stdputstr("gain:"); sound_print_tree_1(susp->gain, n); indent(n); stdputstr("width:"); sound_print_tree_1(susp->width, n); } sound_type snd_make_eqbandvvv(sound_type input, sound_type hz, sound_type gain, sound_type width) { register eqbandvvv_susp_type susp; rate_type sr = input->sr; time_type t0 = min(min(min(input->t0, hz->t0), gain->t0), width->t0); int interp_desc = 0; sample_type scale_factor = 1.0F; time_type t0_min = t0; long lsc; falloc_generic(susp, eqbandvvv_susp_node, "snd_make_eqbandvvv"); susp->inp_scale = input->scale; susp->w1 = 0.0; susp->sw = 0.0; susp->cw = 0.0; susp->J = 0.0; susp->gg = 0.0; susp->b0 = 0.0; susp->b1 = 0.0; susp->b2 = 0.0; susp->a0 = 0.0; susp->a1 = 0.0; susp->a2 = 0.0; susp->z1 = 0.0; susp->z2 = 0.0; susp->recompute = false; susp->inp_period = 1.0 / input->sr; /* select a susp fn based on sample rates */ interp_desc = (interp_desc << 2) + interp_style(input, sr); interp_desc = (interp_desc << 2) + interp_style(hz, sr); interp_desc = (interp_desc << 2) + interp_style(gain, sr); interp_desc = (interp_desc << 2) + interp_style(width, sr); switch (interp_desc) { case INTERP_nnnn: /* handled below */ case INTERP_nnns: /* handled below */ case INTERP_nnsn: /* handled below */ case INTERP_nnss: /* handled below */ case INTERP_nsnn: /* handled below */ case INTERP_nsns: /* handled below */ case INTERP_nssn: /* handled below */ case INTERP_nsss: /* handled below */ case INTERP_snnn: /* handled below */ case INTERP_snns: /* handled below */ case INTERP_snsn: /* handled below */ case INTERP_snss: /* handled below */ case INTERP_ssnn: /* handled below */ case INTERP_ssns: /* handled below */ case INTERP_sssn: /* handled below */ case INTERP_ssss: susp->susp.fetch = eqbandvvv_ssss_fetch; break; case INTERP_niii: /* handled below */ case INTERP_siii: susp->susp.fetch = eqbandvvv_siii_fetch; break; case INTERP_nrrr: /* handled below */ case INTERP_srrr: susp->susp.fetch = eqbandvvv_srrr_fetch; break; default: snd_badsr(); break; } susp->terminate_cnt = UNKNOWN; /* handle unequal start times, if any */ if (t0 < input->t0) sound_prepend_zeros(input, t0); if (t0 < hz->t0) sound_prepend_zeros(hz, t0); if (t0 < gain->t0) sound_prepend_zeros(gain, t0); if (t0 < width->t0) sound_prepend_zeros(width, t0); /* minimum start time over all inputs: */ t0_min = min(input->t0, min(hz->t0, min(gain->t0, min(width->t0, t0)))); /* how many samples to toss before t0: */ susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5); if (susp->susp.toss_cnt > 0) { susp->susp.keep_fetch = susp->susp.fetch; susp->susp.fetch = eqbandvvv_toss_fetch; } /* initialize susp state */ susp->susp.free = eqbandvvv_free; susp->susp.sr = sr; susp->susp.t0 = t0; susp->susp.mark = eqbandvvv_mark; susp->susp.print_tree = eqbandvvv_print_tree; susp->susp.name = "eqbandvvv"; susp->logically_stopped = false; susp->susp.log_stop_cnt = logical_stop_cnt_cvt(input); lsc = logical_stop_cnt_cvt(hz); if (susp->susp.log_stop_cnt > lsc) susp->susp.log_stop_cnt = lsc; lsc = logical_stop_cnt_cvt(gain); if (susp->susp.log_stop_cnt > lsc) susp->susp.log_stop_cnt = lsc; lsc = logical_stop_cnt_cvt(width); if (susp->susp.log_stop_cnt > lsc) susp->susp.log_stop_cnt = lsc; susp->started = false; susp->susp.current = 0; susp->input = input; susp->input_cnt = 0; susp->hz = hz; susp->hz_cnt = 0; susp->hz_pHaSe = 0.0; susp->hz_pHaSe_iNcR = hz->sr / sr; susp->hz_n = 0; susp->output_per_hz = sr / hz->sr; susp->gain = gain; susp->gain_cnt = 0; susp->gain_pHaSe = 0.0; susp->gain_pHaSe_iNcR = gain->sr / sr; susp->gain_n = 0; susp->output_per_gain = sr / gain->sr; susp->width = width; susp->width_cnt = 0; susp->width_pHaSe = 0.0; susp->width_pHaSe_iNcR = width->sr / sr; susp->width_n = 0; susp->output_per_width = sr / width->sr; return sound_create((snd_susp_type)susp, t0, sr, scale_factor); } sound_type snd_eqbandvvv(sound_type input, sound_type hz, sound_type gain, sound_type width) { sound_type input_copy = sound_copy(input); sound_type hz_copy = sound_copy(hz); sound_type gain_copy = sound_copy(gain); sound_type width_copy = sound_copy(width); return snd_make_eqbandvvv(input_copy, hz_copy, gain_copy, width_copy); }