#include "stdio.h" #ifndef mips #include "stdlib.h" #endif #include "xlisp.h" #include "sound.h" #include "falloc.h" #include "cext.h" #include "fmosc.h" void fmosc_free(); typedef struct fmosc_susp_struct { snd_susp_node susp; boolean started; long terminate_cnt; boolean logically_stopped; sound_type s_fm; long s_fm_cnt; sample_block_values_type s_fm_ptr; /* support for interpolation of s_fm */ sample_type s_fm_x1_sample; double s_fm_pHaSe; double s_fm_pHaSe_iNcR; /* support for ramp between samples of s_fm */ double output_per_s_fm; long s_fm_n; table_type the_table; double table_len; double ph_incr; sample_type *table_ptr; double phase; } fmosc_susp_node, *fmosc_susp_type; void fmosc_s_fetch(register fmosc_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register double table_len_reg; register double ph_incr_reg; register sample_type * table_ptr_reg; register double phase_reg; register sample_type s_fm_scale_reg = susp->s_fm->scale; register sample_block_values_type s_fm_ptr_reg; falloc_sample_block(out, "fmosc_s_fetch"); out_ptr = out->samples; snd_list->block = out; while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the s_fm input sample block: */ susp_check_term_log_samples(s_fm, s_fm_ptr, s_fm_cnt); togo = min(togo, susp->s_fm_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = to_stop; } } n = togo; table_len_reg = susp->table_len; ph_incr_reg = susp->ph_incr; table_ptr_reg = susp->table_ptr; phase_reg = susp->phase; s_fm_ptr_reg = susp->s_fm_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ long table_index; double x1; table_index = (long) phase_reg; x1 = table_ptr_reg[table_index]; *out_ptr_reg++ = (sample_type) (x1 + (phase_reg - table_index) * (table_ptr_reg[table_index + 1] - x1)); phase_reg += ph_incr_reg + (s_fm_scale_reg * *s_fm_ptr_reg++); while (phase_reg > table_len_reg) phase_reg -= table_len_reg; /* watch out for negative frequencies! */ while (phase_reg < 0) phase_reg += table_len_reg; } while (--n); /* inner loop */ susp->phase = phase_reg; /* using s_fm_ptr_reg is a bad idea on RS/6000: */ susp->s_fm_ptr += togo; out_ptr += togo; susp_took(s_fm_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; } } /* fmosc_s_fetch */ void fmosc_i_fetch(register fmosc_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register double table_len_reg; register double ph_incr_reg; register sample_type * table_ptr_reg; register double phase_reg; register double s_fm_pHaSe_iNcR_rEg = susp->s_fm_pHaSe_iNcR; register double s_fm_pHaSe_ReG; register sample_type s_fm_x1_sample_reg; falloc_sample_block(out, "fmosc_i_fetch"); out_ptr = out->samples; snd_list->block = out; /* make sure sounds are primed with first values */ if (!susp->started) { susp->started = true; susp_check_term_log_samples(s_fm, s_fm_ptr, s_fm_cnt); susp->s_fm_x1_sample = susp_fetch_sample(s_fm, s_fm_ptr, s_fm_cnt); } while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = to_stop; } } n = togo; table_len_reg = susp->table_len; ph_incr_reg = susp->ph_incr; table_ptr_reg = susp->table_ptr; phase_reg = susp->phase; s_fm_pHaSe_ReG = susp->s_fm_pHaSe; s_fm_x1_sample_reg = susp->s_fm_x1_sample; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ long table_index; double x1; if (s_fm_pHaSe_ReG >= 1.0) { /* fixup-depends s_fm */ /* pick up next sample as s_fm_x1_sample: */ susp->s_fm_ptr++; susp_took(s_fm_cnt, 1); s_fm_pHaSe_ReG -= 1.0; susp_check_term_log_samples_break(s_fm, s_fm_ptr, s_fm_cnt, s_fm_x1_sample_reg); s_fm_x1_sample_reg = susp_current_sample(s_fm, s_fm_ptr); } table_index = (long) phase_reg; x1 = table_ptr_reg[table_index]; *out_ptr_reg++ = (sample_type) (x1 + (phase_reg - table_index) * (table_ptr_reg[table_index + 1] - x1)); phase_reg += ph_incr_reg + s_fm_x1_sample_reg; while (phase_reg > table_len_reg) phase_reg -= table_len_reg; /* watch out for negative frequencies! */ while (phase_reg < 0) phase_reg += table_len_reg; s_fm_pHaSe_ReG += s_fm_pHaSe_iNcR_rEg; } while (--n); /* inner loop */ togo -= n; susp->phase = phase_reg; susp->s_fm_pHaSe = s_fm_pHaSe_ReG; susp->s_fm_x1_sample = s_fm_x1_sample_reg; out_ptr += togo; cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; } } /* fmosc_i_fetch */ void fmosc_r_fetch(register fmosc_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ sample_type s_fm_val; int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register double table_len_reg; register double ph_incr_reg; register sample_type * table_ptr_reg; register double phase_reg; falloc_sample_block(out, "fmosc_r_fetch"); out_ptr = out->samples; snd_list->block = out; /* make sure sounds are primed with first values */ if (!susp->started) { susp->started = true; susp->s_fm_pHaSe = 1.0; } susp_check_term_log_samples(s_fm, s_fm_ptr, s_fm_cnt); while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* grab next s_fm_x1_sample when phase goes past 1.0; */ /* use s_fm_n (computed below) to avoid roundoff errors: */ if (susp->s_fm_n <= 0) { susp_check_term_log_samples(s_fm, s_fm_ptr, s_fm_cnt); susp->s_fm_x1_sample = susp_fetch_sample(s_fm, s_fm_ptr, s_fm_cnt); susp->s_fm_pHaSe -= 1.0; /* s_fm_n gets number of samples before phase exceeds 1.0: */ susp->s_fm_n = (long) ((1.0 - susp->s_fm_pHaSe) * susp->output_per_s_fm); } togo = min(togo, susp->s_fm_n); s_fm_val = susp->s_fm_x1_sample; /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = to_stop; } } n = togo; table_len_reg = susp->table_len; ph_incr_reg = susp->ph_incr; table_ptr_reg = susp->table_ptr; phase_reg = susp->phase; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ long table_index; double x1; table_index = (long) phase_reg; x1 = table_ptr_reg[table_index]; *out_ptr_reg++ = (sample_type) (x1 + (phase_reg - table_index) * (table_ptr_reg[table_index + 1] - x1)); phase_reg += ph_incr_reg + s_fm_val; while (phase_reg > table_len_reg) phase_reg -= table_len_reg; /* watch out for negative frequencies! */ while (phase_reg < 0) phase_reg += table_len_reg; } while (--n); /* inner loop */ susp->phase = phase_reg; out_ptr += togo; susp->s_fm_pHaSe += togo * susp->s_fm_pHaSe_iNcR; susp->s_fm_n -= togo; cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; } } /* fmosc_r_fetch */ void fmosc_toss_fetch(susp, snd_list) register fmosc_susp_type susp; snd_list_type snd_list; { long final_count = susp->susp.toss_cnt; time_type final_time = susp->susp.t0; long n; /* fetch samples from s_fm up to final_time for this block of zeros */ while ((round((final_time - susp->s_fm->t0) * susp->s_fm->sr)) >= susp->s_fm->current) susp_get_samples(s_fm, s_fm_ptr, s_fm_cnt); /* convert to normal processing when we hit final_count */ /* we want each signal positioned at final_time */ n = round((final_time - susp->s_fm->t0) * susp->s_fm->sr - (susp->s_fm->current - susp->s_fm_cnt)); susp->s_fm_ptr += n; susp_took(s_fm_cnt, n); susp->susp.fetch = susp->susp.keep_fetch; (*(susp->susp.fetch))(susp, snd_list); } void fmosc_mark(fmosc_susp_type susp) { sound_xlmark(susp->s_fm); } void fmosc_free(fmosc_susp_type susp) { table_unref(susp->the_table); sound_unref(susp->s_fm); ffree_generic(susp, sizeof(fmosc_susp_node), "fmosc_free"); } void fmosc_print_tree(fmosc_susp_type susp, int n) { indent(n); stdputstr("s_fm:"); sound_print_tree_1(susp->s_fm, n); } sound_type snd_make_fmosc(sound_type s, double step, rate_type sr, double hz, time_type t0, sound_type s_fm, double phase) { register fmosc_susp_type susp; /* sr specified as input parameter */ /* t0 specified as input parameter */ int interp_desc = 0; sample_type scale_factor = 1.0F; time_type t0_min = t0; falloc_generic(susp, fmosc_susp_node, "snd_make_fmosc"); susp->the_table = sound_to_table(s); susp->table_len = susp->the_table->length; susp->ph_incr = 0; susp->table_ptr = susp->the_table->samples; susp->phase = compute_phase(phase, step, (long) susp->table_len, s->sr, sr, hz, &susp->ph_incr); s_fm->scale *= hz != 0 ? (sample_type) (susp->ph_incr / hz) : s->sr / (sr * step_to_hz(step)); /* select a susp fn based on sample rates */ interp_desc = (interp_desc << 2) + interp_style(s_fm, sr); switch (interp_desc) { case INTERP_n: /* handled below */ case INTERP_s: susp->susp.fetch = fmosc_s_fetch; break; case INTERP_i: susp->susp.fetch = fmosc_i_fetch; break; case INTERP_r: susp->susp.fetch = fmosc_r_fetch; break; default: snd_badsr(); break; } susp->terminate_cnt = UNKNOWN; /* handle unequal start times, if any */ if (t0 < s_fm->t0) sound_prepend_zeros(s_fm, t0); /* minimum start time over all inputs: */ t0_min = min(s_fm->t0, t0); /* how many samples to toss before t0: */ susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5); if (susp->susp.toss_cnt > 0) { susp->susp.keep_fetch = susp->susp.fetch; susp->susp.fetch = fmosc_toss_fetch; } /* initialize susp state */ susp->susp.free = fmosc_free; susp->susp.sr = sr; susp->susp.t0 = t0; susp->susp.mark = fmosc_mark; susp->susp.print_tree = fmosc_print_tree; susp->susp.name = "fmosc"; susp->logically_stopped = false; susp->susp.log_stop_cnt = logical_stop_cnt_cvt(s_fm); susp->started = false; susp->susp.current = 0; susp->s_fm = s_fm; susp->s_fm_cnt = 0; susp->s_fm_pHaSe = 0.0; susp->s_fm_pHaSe_iNcR = s_fm->sr / sr; susp->s_fm_n = 0; susp->output_per_s_fm = sr / s_fm->sr; return sound_create((snd_susp_type)susp, t0, sr, scale_factor); } sound_type snd_fmosc(sound_type s, double step, rate_type sr, double hz, time_type t0, sound_type s_fm, double phase) { sound_type s_fm_copy = sound_copy(s_fm); return snd_make_fmosc(s, step, sr, hz, t0, s_fm_copy, phase); }