#include "stdio.h" #define _USE_MATH_DEFINES 1 /* for Visual C++ to get M_LN2 */ #include #ifndef mips #include "stdlib.h" #endif #include "xlisp.h" #include "sound.h" #include "falloc.h" #include "cext.h" #include "ifft.h" void ifft_free(); typedef struct ifft_susp_struct { snd_susp_node susp; long index; long length; LVAL array; long window_len; sample_type *outbuf; LVAL src; long stepsize; sample_type *window; sample_type *samples; table_type table; } ifft_susp_node, *ifft_susp_type; /* index: index into outbuf whree we get output samples * length: size of the frame, window, and outbuf; half size of samples * array: spectral frame goes here (why not a local var?) * window_len: size of window, should equal length * outbuf: real part of samples are multiplied by window and added to * outbuf (after shifting) * src: send :NEXT to this object to get next frame * stepsize: shift by this many and add each frame * samples: result of ifft goes here, real and imag * window: multiply samples by window if any * * IMPLEMENTATION NOTE: * The src argument is an XLisp object that returns either an * array of samples or NIL. The output of ifft is simply the * concatenation of the samples taken from the array. Later, * an ifft will be plugged in and this will return overlapped * adds of the ifft's. * * OVERLAP: stepsize must be less than or equal to the length * of real part of the transformed spectrum. A transform step * works like this: * (1) shift the output buffer by stepsize samples, filling * the end of the buffer with zeros * (2) get and transform an array of spectral coefficients * (3) multiply the result by a window * (4) add the result to the output buffer * (5) output the first stepsize samples of the buffer * * DATA FORMAT: the DC component goes in array elem 0 * Cosine part is in elements 2*i-1 * Sine part is in elements 2*i * Nyquist frequency is in element length-1 */ #include "samples.h" #include "fftext.h" #define MUST_BE_FLONUM(e) \ if (!(e) || ntype(e) != FLONUM) { xlerror("flonum expected", (e)); } table_type get_window_samples(LVAL window, sample_type **samples, long *len) { table_type result = NULL; if (soundp(window)) { sound_type window_sound = getsound(window); xlprot1(window); /* maybe not necessary */ result = sound_to_table(window_sound); xlpop(); *samples = result->samples; *len = (long) (result->length + 0.5); } return result; } void ifft__fetch(register ifft_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register long index_reg; register sample_type * outbuf_reg; falloc_sample_block(out, "ifft__fetch"); out_ptr = out->samples; snd_list->block = out; while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; if (susp->src == NULL) { out: togo = 0; /* indicate termination */ break; /* we're done */ } if (susp->index >= susp->stepsize) { long i; long m, n; LVAL elem; susp->index = 0; susp->array = xleval(cons(s_send, cons(susp->src, consa(s_next)))); if (susp->array == NULL) { susp->src = NULL; goto out; } else if (!vectorp(susp->array)) { xlerror("array expected", susp->array); } else if (susp->samples == NULL) { /* assume arrays are all the same size as first one; now that we know the size, we just have to do this first allocation. */ susp->length = getsize(susp->array); if (susp->length < 1) xlerror("array has no elements", susp->array); if (susp->window && (susp->window_len != susp->length)) xlerror("window size and spectrum size differ", susp->array); /* tricky non-power of 2 detector: only if this is a * power of 2 will the highest 1 bit be cleared when * we subtract 1 ... */ if (susp->length & (susp->length - 1)) xlfail("spectrum size must be a power of 2"); susp->samples = (sample_type *) calloc(susp->length, sizeof(sample_type)); susp->outbuf = (sample_type *) calloc(susp->length, sizeof(sample_type)); } else if (getsize(susp->array) != susp->length) { xlerror("arrays must all be the same length", susp->array); } /* at this point, we have a new array to put samples */ /* the incoming array format is [DC, R1, I1, R2, I2, ... RN] * where RN is the real coef at the Nyquist frequency * but susp->samples should be organized as [DC, RN, R1, I1, ...] */ n = susp->length; /* get the DC (real) coef */ elem = getelement(susp->array, 0); MUST_BE_FLONUM(elem) susp->samples[0] = (sample_type) getflonum(elem); /* get the Nyquist (real) coef */ elem = getelement(susp->array, n - 1); MUST_BE_FLONUM(elem); susp->samples[1] = (sample_type) getflonum(elem); /* get the remaining coef */ for (i = 1; i < n - 1; i++) { elem = getelement(susp->array, i); MUST_BE_FLONUM(elem) susp->samples[i + 1] = (sample_type) getflonum(elem); } susp->array = NULL; /* free the array */ /* here is where the IFFT and windowing should take place */ //fftnf(1, &n, susp->samples, susp->samples + n, -1, 1.0); m = round(log(n) / M_LN2); if (!fftInit(m)) riffts(susp->samples, m, 1); else xlfail("FFT initialization error"); if (susp->window) { n = susp->length; for (i = 0; i < n; i++) { susp->samples[i] *= susp->window[i]; } } /* shift the outbuf */ n = susp->length - susp->stepsize; for (i = 0; i < n; i++) { susp->outbuf[i] = susp->outbuf[i + susp->stepsize]; } /* clear end of outbuf */ for (i = n; i < susp->length; i++) { susp->outbuf[i] = 0; } /* add in the ifft result */ n = susp->length; for (i = 0; i < n; i++) { susp->outbuf[i] += susp->samples[i]; } } togo = min(togo, susp->stepsize - susp->index); n = togo; index_reg = susp->index; outbuf_reg = susp->outbuf; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ *out_ptr_reg++ = outbuf_reg[index_reg++];; } while (--n); /* inner loop */ susp->index = index_reg; susp->outbuf = outbuf_reg; out_ptr += togo; cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } } /* ifft__fetch */ void ifft_mark(ifft_susp_type susp) { if (susp->src) mark(susp->src); if (susp->array) mark(susp->array); } void ifft_free(ifft_susp_type susp) { if (susp->samples) free(susp->samples); if (susp->table) table_unref(susp->table); if (susp->outbuf) free(susp->outbuf); ffree_generic(susp, sizeof(ifft_susp_node), "ifft_free"); } void ifft_print_tree(ifft_susp_type susp, int n) { } sound_type snd_make_ifft(time_type t0, rate_type sr, LVAL src, long stepsize, LVAL window) { register ifft_susp_type susp; /* sr specified as input parameter */ /* t0 specified as input parameter */ sample_type scale_factor = 1.0F; falloc_generic(susp, ifft_susp_node, "snd_make_ifft"); susp->index = stepsize; susp->length = 0; susp->array = NULL; susp->window_len = 0; susp->outbuf = NULL; susp->src = src; susp->stepsize = stepsize; susp->window = NULL; susp->samples = NULL; susp->table = get_window_samples(window, &susp->window, &susp->window_len); susp->susp.fetch = ifft__fetch; /* initialize susp state */ susp->susp.free = ifft_free; susp->susp.sr = sr; susp->susp.t0 = t0; susp->susp.mark = ifft_mark; susp->susp.print_tree = ifft_print_tree; susp->susp.name = "ifft"; susp->susp.log_stop_cnt = UNKNOWN; susp->susp.current = 0; return sound_create((snd_susp_type)susp, t0, sr, scale_factor); } sound_type snd_ifft(time_type t0, rate_type sr, LVAL src, long stepsize, LVAL window) { return snd_make_ifft(t0, sr, src, stepsize, window); }