#include "stdio.h" #ifndef mips #include "stdlib.h" #endif #include "xlisp.h" #include "sound.h" #include "falloc.h" #include "cext.h" #include "lpreson.h" void lpreson_free(); typedef struct lpreson_susp_struct { snd_susp_node susp; long terminate_cnt; boolean logically_stopped; sound_type x_snd; long x_snd_cnt; sample_block_values_type x_snd_ptr; long fr_indx; long ak_len; long frame_length; LVAL src; LVAL frame; double *ak_coefs; double *zk_buf; double gain; long index; } lpreson_susp_node, *lpreson_susp_type; #include "samples.h" void lpreson_s_fetch(register lpreson_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register long fr_indx_reg; register long ak_len_reg; register double * ak_coefs_reg; register double * zk_buf_reg; register double gain_reg; register long index_reg; register sample_type x_snd_scale_reg = susp->x_snd->scale; register sample_block_values_type x_snd_ptr_reg; falloc_sample_block(out, "lpreson_s_fetch"); out_ptr = out->samples; snd_list->block = out; while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the x_snd input sample block: */ susp_check_term_log_samples(x_snd, x_snd_ptr, x_snd_cnt); togo = min(togo, susp->x_snd_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = to_stop; } } if (susp->src == NULL) { out: togo = 0; /* indicate termination */ break; /* we're done */ } if (susp->fr_indx >= susp->frame_length) susp->fr_indx -= susp->frame_length; if (susp->fr_indx==0) { long i; susp->frame = xleval(cons(s_send, cons(susp->src, consa(s_next)))); if (susp->frame == NULL) { susp->src = NULL; goto out; /* en susp->frame tenemos la lista proporcionada por el objeto */ } else if (!listp(susp->frame) || !listp(cdr(susp->frame)) || !listp(cdr(cdr(susp->frame))) || !listp(cdr(cdr(cdr(susp->frame))))) { xlerror("list expected", susp->frame); } /* frame is a list: (RMS1 RMS2 ERR FILTER-COEFS) */ /* gain is square root of RMS2 */ susp->gain = sqrt(getflonum(car(cdr(susp->frame)))); /* get filter coefs */ susp->frame=car(cdr(cdr(cdr(susp->frame)))); if (!vectorp(susp->frame)) { xlerror("array expected", susp->frame); } else if (susp->ak_coefs == NULL) { susp->ak_len = getsize(susp->frame); if (susp->ak_len < 1) xlerror("array has no elements", susp->frame); susp->ak_coefs = (double *) calloc(susp->ak_len, sizeof(double)); susp->zk_buf = (double *) calloc(susp->ak_len, sizeof(double)); } /* at this point we have a new array and a place to put ak coefs */ for (i=0; i < susp->ak_len; i++) { LVAL elem = getelement(susp->frame, i); if (ntype(elem) != FLONUM) { xlerror("flonum expected", elem); } susp->ak_coefs[i] = getflonum(elem); } // printf("NUEVO FILTRO: "); /* here for debug */ // for(k=0; k < susp->ak_len; k++) printf(" %g ", susp->ak_coefs[k]); // printf("GAIN %g AKLEN %d ", susp->gain, susp->ak_len); susp->frame = NULL; /* free the array */ } togo = min(susp->frame_length - susp->fr_indx, togo); n = togo; fr_indx_reg = susp->fr_indx; ak_len_reg = susp->ak_len; ak_coefs_reg = susp->ak_coefs; zk_buf_reg = susp->zk_buf; gain_reg = susp->gain; index_reg = susp->index; x_snd_ptr_reg = susp->x_snd_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ double z0; long xi; long xj; z0 = (x_snd_scale_reg * *x_snd_ptr_reg++) * gain_reg; for (xi=0; xi < ak_len_reg; xi++) { xj = index_reg + xi; if (xj >= ak_len_reg) xj -= ak_len_reg; z0 += ak_coefs_reg[xi] * zk_buf_reg[xj]; } zk_buf_reg[index_reg] = z0; index_reg++; if (index_reg == ak_len_reg) index_reg = 0; fr_indx_reg++; *out_ptr_reg++ = (sample_type) z0; ; } while (--n); /* inner loop */ susp->fr_indx = fr_indx_reg; susp->ak_len = ak_len_reg; susp->ak_coefs = ak_coefs_reg; susp->zk_buf = zk_buf_reg; susp->gain = gain_reg; susp->index = index_reg; /* using x_snd_ptr_reg is a bad idea on RS/6000: */ susp->x_snd_ptr += togo; out_ptr += togo; susp_took(x_snd_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; } } /* lpreson_s_fetch */ void lpreson_toss_fetch(susp, snd_list) register lpreson_susp_type susp; snd_list_type snd_list; { long final_count = susp->susp.toss_cnt; time_type final_time = susp->susp.t0; long n; /* fetch samples from x_snd up to final_time for this block of zeros */ while ((round((final_time - susp->x_snd->t0) * susp->x_snd->sr)) >= susp->x_snd->current) susp_get_samples(x_snd, x_snd_ptr, x_snd_cnt); /* convert to normal processing when we hit final_count */ /* we want each signal positioned at final_time */ n = round((final_time - susp->x_snd->t0) * susp->x_snd->sr - (susp->x_snd->current - susp->x_snd_cnt)); susp->x_snd_ptr += n; susp_took(x_snd_cnt, n); susp->susp.fetch = susp->susp.keep_fetch; (*(susp->susp.fetch))(susp, snd_list); } void lpreson_mark(lpreson_susp_type susp) { if (susp->frame) mark(susp->frame); if (susp->src) mark(susp->src); sound_xlmark(susp->x_snd); } void lpreson_free(lpreson_susp_type susp) { free(susp->ak_coefs); free(susp->zk_buf); sound_unref(susp->x_snd); ffree_generic(susp, sizeof(lpreson_susp_node), "lpreson_free"); } void lpreson_print_tree(lpreson_susp_type susp, int n) { indent(n); stdputstr("x_snd:"); sound_print_tree_1(susp->x_snd, n); } sound_type snd_make_lpreson(sound_type x_snd, LVAL src, time_type frame_time) { register lpreson_susp_type susp; rate_type sr = x_snd->sr; time_type t0 = x_snd->t0; int interp_desc = 0; sample_type scale_factor = 1.0F; time_type t0_min = t0; falloc_generic(susp, lpreson_susp_node, "snd_make_lpreson"); susp->fr_indx = 0; susp->ak_len = 0; susp->frame_length = (long) (frame_time*x_snd->sr); susp->src = src; susp->frame = NULL; susp->ak_coefs = NULL; susp->zk_buf = NULL; susp->gain = 1.0; susp->index = 0; susp->susp.fetch = lpreson_s_fetch; susp->terminate_cnt = UNKNOWN; /* handle unequal start times, if any */ if (t0 < x_snd->t0) sound_prepend_zeros(x_snd, t0); /* minimum start time over all inputs: */ t0_min = min(x_snd->t0, t0); /* how many samples to toss before t0: */ susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5); if (susp->susp.toss_cnt > 0) { susp->susp.keep_fetch = susp->susp.fetch; susp->susp.fetch = lpreson_toss_fetch; } /* initialize susp state */ susp->susp.free = lpreson_free; susp->susp.sr = sr; susp->susp.t0 = t0; susp->susp.mark = lpreson_mark; susp->susp.print_tree = lpreson_print_tree; susp->susp.name = "lpreson"; susp->logically_stopped = false; susp->susp.log_stop_cnt = logical_stop_cnt_cvt(x_snd); susp->susp.current = 0; susp->x_snd = x_snd; susp->x_snd_cnt = 0; return sound_create((snd_susp_type)susp, t0, sr, scale_factor); } sound_type snd_lpreson(sound_type x_snd, LVAL src, time_type frame_time) { sound_type x_snd_copy = sound_copy(x_snd); return snd_make_lpreson(x_snd_copy, src, frame_time); }