#include "stdio.h" #ifndef mips #include "stdlib.h" #endif #include "xlisp.h" #include "sound.h" #include "falloc.h" #include "cext.h" #include "maxv.h" void maxv_free(); typedef struct maxv_susp_struct { snd_susp_node susp; long terminate_cnt; boolean logically_stopped; sound_type s1; long s1_cnt; sample_block_values_type s1_ptr; sound_type s2; long s2_cnt; sample_block_values_type s2_ptr; } maxv_susp_node, *maxv_susp_type; void maxv_ss_fetch(register maxv_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register sample_type s2_scale_reg = susp->s2->scale; register sample_block_values_type s2_ptr_reg; register sample_type s1_scale_reg = susp->s1->scale; register sample_block_values_type s1_ptr_reg; falloc_sample_block(out, "maxv_ss_fetch"); out_ptr = out->samples; snd_list->block = out; while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the s1 input sample block: */ susp_check_term_log_samples(s1, s1_ptr, s1_cnt); togo = min(togo, susp->s1_cnt); /* don't run past the s2 input sample block: */ susp_check_term_log_samples(s2, s2_ptr, s2_cnt); togo = min(togo, susp->s2_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = to_stop; } } n = togo; s2_ptr_reg = susp->s2_ptr; s1_ptr_reg = susp->s1_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ double x1 = (s1_scale_reg * *s1_ptr_reg++); double x2 = (s2_scale_reg * *s2_ptr_reg++); *out_ptr_reg++ = (sample_type) (x1 > x2 ? x1 : x2); } while (--n); /* inner loop */ /* using s2_ptr_reg is a bad idea on RS/6000: */ susp->s2_ptr += togo; /* using s1_ptr_reg is a bad idea on RS/6000: */ susp->s1_ptr += togo; out_ptr += togo; susp_took(s1_cnt, togo); susp_took(s2_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; } } /* maxv_ss_fetch */ void maxv_toss_fetch(susp, snd_list) register maxv_susp_type susp; snd_list_type snd_list; { long final_count = susp->susp.toss_cnt; time_type final_time = susp->susp.t0; long n; /* fetch samples from s1 up to final_time for this block of zeros */ while ((round((final_time - susp->s1->t0) * susp->s1->sr)) >= susp->s1->current) susp_get_samples(s1, s1_ptr, s1_cnt); /* fetch samples from s2 up to final_time for this block of zeros */ while ((round((final_time - susp->s2->t0) * susp->s2->sr)) >= susp->s2->current) susp_get_samples(s2, s2_ptr, s2_cnt); /* convert to normal processing when we hit final_count */ /* we want each signal positioned at final_time */ n = round((final_time - susp->s1->t0) * susp->s1->sr - (susp->s1->current - susp->s1_cnt)); susp->s1_ptr += n; susp_took(s1_cnt, n); n = round((final_time - susp->s2->t0) * susp->s2->sr - (susp->s2->current - susp->s2_cnt)); susp->s2_ptr += n; susp_took(s2_cnt, n); susp->susp.fetch = susp->susp.keep_fetch; (*(susp->susp.fetch))(susp, snd_list); } void maxv_mark(maxv_susp_type susp) { sound_xlmark(susp->s1); sound_xlmark(susp->s2); } void maxv_free(maxv_susp_type susp) { sound_unref(susp->s1); sound_unref(susp->s2); ffree_generic(susp, sizeof(maxv_susp_node), "maxv_free"); } void maxv_print_tree(maxv_susp_type susp, int n) { indent(n); stdputstr("s1:"); sound_print_tree_1(susp->s1, n); indent(n); stdputstr("s2:"); sound_print_tree_1(susp->s2, n); } sound_type snd_make_maxv(sound_type s1, sound_type s2) { register maxv_susp_type susp; rate_type sr = max(s1->sr, s2->sr); time_type t0 = max(s1->t0, s2->t0); int interp_desc = 0; sample_type scale_factor = 1.0F; time_type t0_min = t0; long lsc; falloc_generic(susp, maxv_susp_node, "snd_make_maxv"); susp->susp.fetch = maxv_ss_fetch; susp->terminate_cnt = UNKNOWN; /* handle unequal start times, if any */ if (t0 < s1->t0) sound_prepend_zeros(s1, t0); if (t0 < s2->t0) sound_prepend_zeros(s2, t0); /* minimum start time over all inputs: */ t0_min = min(s1->t0, min(s2->t0, t0)); /* how many samples to toss before t0: */ susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5); if (susp->susp.toss_cnt > 0) { susp->susp.keep_fetch = susp->susp.fetch; susp->susp.fetch = maxv_toss_fetch; } /* initialize susp state */ susp->susp.free = maxv_free; susp->susp.sr = sr; susp->susp.t0 = t0; susp->susp.mark = maxv_mark; susp->susp.print_tree = maxv_print_tree; susp->susp.name = "maxv"; susp->logically_stopped = false; susp->susp.log_stop_cnt = logical_stop_cnt_cvt(s1); lsc = logical_stop_cnt_cvt(s2); if (susp->susp.log_stop_cnt > lsc) susp->susp.log_stop_cnt = lsc; susp->susp.current = 0; susp->s1 = s1; susp->s1_cnt = 0; susp->s2 = s2; susp->s2_cnt = 0; return sound_create((snd_susp_type)susp, t0, sr, scale_factor); } sound_type snd_maxv(sound_type s1, sound_type s2) { sound_type s1_copy = sound_copy(s1); sound_type s2_copy = sound_copy(s2); return snd_make_maxv(s1_copy, s2_copy); }