#include "stdio.h" #ifndef mips #include "stdlib.h" #endif #include "xlisp.h" #include "sound.h" #include "falloc.h" #include "cext.h" #include "resonvc.h" void resonvc_free(); typedef struct resonvc_susp_struct { snd_susp_node susp; boolean started; long terminate_cnt; boolean logically_stopped; sound_type s1; long s1_cnt; sample_block_values_type s1_ptr; sound_type hz; long hz_cnt; sample_block_values_type hz_ptr; /* support for interpolation of hz */ sample_type hz_x1_sample; double hz_pHaSe; double hz_pHaSe_iNcR; /* support for ramp between samples of hz */ double output_per_hz; long hz_n; double scale1; double c3co; double c3p1; double c3t4; double omc3; double c2; double c1; int normalization; double y1; double y2; } resonvc_susp_node, *resonvc_susp_type; void resonvc_ns_fetch(register resonvc_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register double scale1_reg; register double c3co_reg; register double c3p1_reg; register double c3t4_reg; register double omc3_reg; register double c2_reg; register double c1_reg; register int normalization_reg; register double y1_reg; register double y2_reg; register sample_type hz_scale_reg = susp->hz->scale; register sample_block_values_type hz_ptr_reg; register sample_block_values_type s1_ptr_reg; falloc_sample_block(out, "resonvc_ns_fetch"); out_ptr = out->samples; snd_list->block = out; while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the s1 input sample block: */ susp_check_term_log_samples(s1, s1_ptr, s1_cnt); togo = min(togo, susp->s1_cnt); /* don't run past the hz input sample block: */ susp_check_term_samples(hz, hz_ptr, hz_cnt); togo = min(togo, susp->hz_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = to_stop; } } n = togo; scale1_reg = susp->scale1; c3co_reg = susp->c3co; c3p1_reg = susp->c3p1; c3t4_reg = susp->c3t4; omc3_reg = susp->omc3; c2_reg = susp->c2; c1_reg = susp->c1; normalization_reg = susp->normalization; y1_reg = susp->y1; y2_reg = susp->y2; hz_ptr_reg = susp->hz_ptr; s1_ptr_reg = susp->s1_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ c2_reg = c3t4_reg * cos((hz_scale_reg * *hz_ptr_reg++)) / c3p1_reg; c1_reg = (normalization_reg == 0 ? scale1_reg : (normalization_reg == 1 ? omc3_reg * sqrt(1.0 - c2_reg * c2_reg / c3t4_reg) : sqrt(c3p1_reg * c3p1_reg - c2_reg * c2_reg) * omc3_reg / c3p1_reg)) * scale1_reg; { double y0 = c1_reg * *s1_ptr_reg++ + c2_reg * y1_reg - c3co_reg * y2_reg; *out_ptr_reg++ = (sample_type) y0; y2_reg = y1_reg; y1_reg = y0; }; } while (--n); /* inner loop */ susp->y1 = y1_reg; susp->y2 = y2_reg; /* using hz_ptr_reg is a bad idea on RS/6000: */ susp->hz_ptr += togo; /* using s1_ptr_reg is a bad idea on RS/6000: */ susp->s1_ptr += togo; out_ptr += togo; susp_took(s1_cnt, togo); susp_took(hz_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; } } /* resonvc_ns_fetch */ void resonvc_ni_fetch(register resonvc_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register double scale1_reg; register double c3co_reg; register double c3p1_reg; register double c3t4_reg; register double omc3_reg; register double c2_reg; register double c1_reg; register int normalization_reg; register double y1_reg; register double y2_reg; register double hz_pHaSe_iNcR_rEg = susp->hz_pHaSe_iNcR; register double hz_pHaSe_ReG; register sample_type hz_x1_sample_reg; register sample_block_values_type s1_ptr_reg; falloc_sample_block(out, "resonvc_ni_fetch"); out_ptr = out->samples; snd_list->block = out; /* make sure sounds are primed with first values */ if (!susp->started) { susp->started = true; susp_check_term_samples(hz, hz_ptr, hz_cnt); susp->hz_x1_sample = susp_fetch_sample(hz, hz_ptr, hz_cnt); susp->c2 = susp->c3t4 * cos(susp->hz_x1_sample) / susp->c3p1; susp->c1 = (susp->normalization == 0 ? susp->scale1 : (susp->normalization == 1 ? susp->omc3 * sqrt(1.0 - susp->c2 * susp->c2 / susp->c3t4) : sqrt(susp->c3p1 * susp->c3p1 - susp->c2 * susp->c2) * susp->omc3 / susp->c3p1)) * susp->scale1; } while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the s1 input sample block: */ susp_check_term_log_samples(s1, s1_ptr, s1_cnt); togo = min(togo, susp->s1_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = to_stop; } } n = togo; scale1_reg = susp->scale1; c3co_reg = susp->c3co; c3p1_reg = susp->c3p1; c3t4_reg = susp->c3t4; omc3_reg = susp->omc3; c2_reg = susp->c2; c1_reg = susp->c1; normalization_reg = susp->normalization; y1_reg = susp->y1; y2_reg = susp->y2; hz_pHaSe_ReG = susp->hz_pHaSe; hz_x1_sample_reg = susp->hz_x1_sample; s1_ptr_reg = susp->s1_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ if (hz_pHaSe_ReG >= 1.0) { /* fixup-depends hz */ /* pick up next sample as hz_x1_sample: */ susp->hz_ptr++; susp_took(hz_cnt, 1); hz_pHaSe_ReG -= 1.0; susp_check_term_samples_break(hz, hz_ptr, hz_cnt, hz_x1_sample_reg); hz_x1_sample_reg = susp_current_sample(hz, hz_ptr); c2_reg = susp->c2 = c3t4_reg * cos(hz_x1_sample_reg) / c3p1_reg; c1_reg = susp->c1 = (normalization_reg == 0 ? scale1_reg : (normalization_reg == 1 ? omc3_reg * sqrt(1.0 - c2_reg * c2_reg / c3t4_reg) : sqrt(c3p1_reg * c3p1_reg - c2_reg * c2_reg) * omc3_reg / c3p1_reg)) * scale1_reg; } { double y0 = c1_reg * *s1_ptr_reg++ + c2_reg * y1_reg - c3co_reg * y2_reg; *out_ptr_reg++ = (sample_type) y0; y2_reg = y1_reg; y1_reg = y0; }; hz_pHaSe_ReG += hz_pHaSe_iNcR_rEg; } while (--n); /* inner loop */ togo -= n; susp->y1 = y1_reg; susp->y2 = y2_reg; susp->hz_pHaSe = hz_pHaSe_ReG; susp->hz_x1_sample = hz_x1_sample_reg; /* using s1_ptr_reg is a bad idea on RS/6000: */ susp->s1_ptr += togo; out_ptr += togo; susp_took(s1_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; } } /* resonvc_ni_fetch */ void resonvc_nr_fetch(register resonvc_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ sample_type hz_val; int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register double scale1_reg; register double c3co_reg; register double c3p1_reg; register double c3t4_reg; register double omc3_reg; register double c2_reg; register double c1_reg; register int normalization_reg; register double y1_reg; register double y2_reg; register sample_block_values_type s1_ptr_reg; falloc_sample_block(out, "resonvc_nr_fetch"); out_ptr = out->samples; snd_list->block = out; /* make sure sounds are primed with first values */ if (!susp->started) { susp->started = true; susp->hz_pHaSe = 1.0; } susp_check_term_samples(hz, hz_ptr, hz_cnt); while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the s1 input sample block: */ susp_check_term_log_samples(s1, s1_ptr, s1_cnt); togo = min(togo, susp->s1_cnt); /* grab next hz_x1_sample when phase goes past 1.0; */ /* use hz_n (computed below) to avoid roundoff errors: */ if (susp->hz_n <= 0) { susp_check_term_samples(hz, hz_ptr, hz_cnt); susp->hz_x1_sample = susp_fetch_sample(hz, hz_ptr, hz_cnt); susp->hz_pHaSe -= 1.0; /* hz_n gets number of samples before phase exceeds 1.0: */ susp->hz_n = (long) ((1.0 - susp->hz_pHaSe) * susp->output_per_hz); susp->c2 = susp->c3t4 * cos(susp->hz_x1_sample) / susp->c3p1; susp->c1 = (susp->normalization == 0 ? susp->scale1 : (susp->normalization == 1 ? susp->omc3 * sqrt(1.0 - susp->c2 * susp->c2 / susp->c3t4) : sqrt(susp->c3p1 * susp->c3p1 - susp->c2 * susp->c2) * susp->omc3 / susp->c3p1)) * susp->scale1; } togo = min(togo, susp->hz_n); hz_val = susp->hz_x1_sample; /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = to_stop; } } n = togo; scale1_reg = susp->scale1; c3co_reg = susp->c3co; c3p1_reg = susp->c3p1; c3t4_reg = susp->c3t4; omc3_reg = susp->omc3; c2_reg = susp->c2; c1_reg = susp->c1; normalization_reg = susp->normalization; y1_reg = susp->y1; y2_reg = susp->y2; s1_ptr_reg = susp->s1_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ { double y0 = c1_reg * *s1_ptr_reg++ + c2_reg * y1_reg - c3co_reg * y2_reg; *out_ptr_reg++ = (sample_type) y0; y2_reg = y1_reg; y1_reg = y0; }; } while (--n); /* inner loop */ susp->y1 = y1_reg; susp->y2 = y2_reg; /* using s1_ptr_reg is a bad idea on RS/6000: */ susp->s1_ptr += togo; out_ptr += togo; susp_took(s1_cnt, togo); susp->hz_pHaSe += togo * susp->hz_pHaSe_iNcR; susp->hz_n -= togo; cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; } } /* resonvc_nr_fetch */ void resonvc_toss_fetch(susp, snd_list) register resonvc_susp_type susp; snd_list_type snd_list; { long final_count = susp->susp.toss_cnt; time_type final_time = susp->susp.t0; long n; /* fetch samples from s1 up to final_time for this block of zeros */ while ((round((final_time - susp->s1->t0) * susp->s1->sr)) >= susp->s1->current) susp_get_samples(s1, s1_ptr, s1_cnt); /* fetch samples from hz up to final_time for this block of zeros */ while ((round((final_time - susp->hz->t0) * susp->hz->sr)) >= susp->hz->current) susp_get_samples(hz, hz_ptr, hz_cnt); /* convert to normal processing when we hit final_count */ /* we want each signal positioned at final_time */ n = round((final_time - susp->s1->t0) * susp->s1->sr - (susp->s1->current - susp->s1_cnt)); susp->s1_ptr += n; susp_took(s1_cnt, n); n = round((final_time - susp->hz->t0) * susp->hz->sr - (susp->hz->current - susp->hz_cnt)); susp->hz_ptr += n; susp_took(hz_cnt, n); susp->susp.fetch = susp->susp.keep_fetch; (*(susp->susp.fetch))(susp, snd_list); } void resonvc_mark(resonvc_susp_type susp) { sound_xlmark(susp->s1); sound_xlmark(susp->hz); } void resonvc_free(resonvc_susp_type susp) { sound_unref(susp->s1); sound_unref(susp->hz); ffree_generic(susp, sizeof(resonvc_susp_node), "resonvc_free"); } void resonvc_print_tree(resonvc_susp_type susp, int n) { indent(n); stdputstr("s1:"); sound_print_tree_1(susp->s1, n); indent(n); stdputstr("hz:"); sound_print_tree_1(susp->hz, n); } sound_type snd_make_resonvc(sound_type s1, sound_type hz, double bw, int normalization) { register resonvc_susp_type susp; rate_type sr = s1->sr; time_type t0 = max(s1->t0, hz->t0); int interp_desc = 0; sample_type scale_factor = 1.0F; time_type t0_min = t0; falloc_generic(susp, resonvc_susp_node, "snd_make_resonvc"); susp->scale1 = s1->scale; susp->c3co = exp(bw * -PI2 / s1->sr); susp->c3p1 = susp->c3co + 1.0; susp->c3t4 = susp->c3co * 4.0; susp->omc3 = 1.0 - susp->c3co; susp->c2 = 0.0; susp->c1 = 0.0; susp->normalization = normalization; susp->y1 = 0.0; susp->y2 = 0.0; hz->scale = (sample_type) (hz->scale * (PI2 / s1->sr)); /* select a susp fn based on sample rates */ interp_desc = (interp_desc << 2) + interp_style(s1, sr); interp_desc = (interp_desc << 2) + interp_style(hz, sr); switch (interp_desc) { case INTERP_sn: /* handled below */ case INTERP_ss: /* handled below */ case INTERP_nn: /* handled below */ case INTERP_ns: susp->susp.fetch = resonvc_ns_fetch; break; case INTERP_si: /* handled below */ case INTERP_ni: susp->susp.fetch = resonvc_ni_fetch; break; case INTERP_sr: /* handled below */ case INTERP_nr: susp->susp.fetch = resonvc_nr_fetch; break; default: snd_badsr(); break; } susp->terminate_cnt = UNKNOWN; /* handle unequal start times, if any */ if (t0 < s1->t0) sound_prepend_zeros(s1, t0); if (t0 < hz->t0) sound_prepend_zeros(hz, t0); /* minimum start time over all inputs: */ t0_min = min(s1->t0, min(hz->t0, t0)); /* how many samples to toss before t0: */ susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5); if (susp->susp.toss_cnt > 0) { susp->susp.keep_fetch = susp->susp.fetch; susp->susp.fetch = resonvc_toss_fetch; } /* initialize susp state */ susp->susp.free = resonvc_free; susp->susp.sr = sr; susp->susp.t0 = t0; susp->susp.mark = resonvc_mark; susp->susp.print_tree = resonvc_print_tree; susp->susp.name = "resonvc"; susp->logically_stopped = false; susp->susp.log_stop_cnt = logical_stop_cnt_cvt(s1); susp->started = false; susp->susp.current = 0; susp->s1 = s1; susp->s1_cnt = 0; susp->hz = hz; susp->hz_cnt = 0; susp->hz_pHaSe = 0.0; susp->hz_pHaSe_iNcR = hz->sr / sr; susp->hz_n = 0; susp->output_per_hz = sr / hz->sr; return sound_create((snd_susp_type)susp, t0, sr, scale_factor); } sound_type snd_resonvc(sound_type s1, sound_type hz, double bw, int normalization) { sound_type s1_copy = sound_copy(s1); sound_type hz_copy = sound_copy(hz); return snd_make_resonvc(s1_copy, hz_copy, bw, normalization); }