#include "stdio.h" #ifndef mips #include "stdlib.h" #endif #include "xlisp.h" #include "sound.h" #include "falloc.h" #include "cext.h" #include "tapf.h" void tapf_free(); typedef struct tapf_susp_struct { snd_susp_node susp; boolean started; long terminate_cnt; boolean logically_stopped; sound_type s1; long s1_cnt; sample_block_values_type s1_ptr; sound_type vardelay; long vardelay_cnt; sample_block_values_type vardelay_ptr; /* support for interpolation of vardelay */ sample_type vardelay_x1_sample; double vardelay_pHaSe; double vardelay_pHaSe_iNcR; /* support for ramp between samples of vardelay */ double output_per_vardelay; long vardelay_n; double offset; double vdscale; long maxdelay; long bufflen; long index; sample_type *buffer; } tapf_susp_node, *tapf_susp_type; void tapf_sn_fetch(register tapf_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register double offset_reg; register double vdscale_reg; register long maxdelay_reg; register long bufflen_reg; register long index_reg; register sample_type * buffer_reg; register sample_block_values_type vardelay_ptr_reg; register sample_type s1_scale_reg = susp->s1->scale; register sample_block_values_type s1_ptr_reg; falloc_sample_block(out, "tapf_sn_fetch"); out_ptr = out->samples; snd_list->block = out; while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the s1 input sample block: */ susp_check_term_log_samples(s1, s1_ptr, s1_cnt); togo = min(togo, susp->s1_cnt); /* don't run past the vardelay input sample block: */ susp_check_term_samples(vardelay, vardelay_ptr, vardelay_cnt); togo = min(togo, susp->vardelay_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = to_stop; } } n = togo; offset_reg = susp->offset; vdscale_reg = susp->vdscale; maxdelay_reg = susp->maxdelay; bufflen_reg = susp->bufflen; index_reg = susp->index; buffer_reg = susp->buffer; vardelay_ptr_reg = susp->vardelay_ptr; s1_ptr_reg = susp->s1_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ long phase; phase = (long) (*vardelay_ptr_reg++ * vdscale_reg + offset_reg); /* now phase should give number of samples of delay */ if (phase < 0) phase = 0; else if (phase > maxdelay_reg) phase = maxdelay_reg; phase = index_reg - phase; /* now phase is a location in the buffer_reg (before modulo) */ /* Time out to update the buffer_reg: * this is a tricky buffer_reg: buffer_reg[0] == buffer_reg[bufflen_reg] * the logical length is bufflen_reg, but the actual length * is bufflen_reg + 1 to allow for a repeated sample at the * end. This allows for efficient interpolation. */ buffer_reg[index_reg++] = (s1_scale_reg * *s1_ptr_reg++); if (index_reg >= bufflen_reg) { index_reg = 0; } /* back to the phase calculation: * use conditional instead of modulo */ if (phase < 0) phase += bufflen_reg; *out_ptr_reg++ = (sample_type) (buffer_reg[phase]);; } while (--n); /* inner loop */ susp->bufflen = bufflen_reg; susp->index = index_reg; /* using vardelay_ptr_reg is a bad idea on RS/6000: */ susp->vardelay_ptr += togo; /* using s1_ptr_reg is a bad idea on RS/6000: */ susp->s1_ptr += togo; out_ptr += togo; susp_took(s1_cnt, togo); susp_took(vardelay_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; } } /* tapf_sn_fetch */ void tapf_si_fetch(register tapf_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ sample_type vardelay_x2_sample; int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register double offset_reg; register double vdscale_reg; register long maxdelay_reg; register long bufflen_reg; register long index_reg; register sample_type * buffer_reg; register double vardelay_pHaSe_iNcR_rEg = susp->vardelay_pHaSe_iNcR; register double vardelay_pHaSe_ReG; register sample_type vardelay_x1_sample_reg; register sample_type s1_scale_reg = susp->s1->scale; register sample_block_values_type s1_ptr_reg; falloc_sample_block(out, "tapf_si_fetch"); out_ptr = out->samples; snd_list->block = out; /* make sure sounds are primed with first values */ if (!susp->started) { susp->started = true; susp_check_term_samples(vardelay, vardelay_ptr, vardelay_cnt); susp->vardelay_x1_sample = (susp->vardelay_cnt--, *(susp->vardelay_ptr)); } susp_check_term_samples(vardelay, vardelay_ptr, vardelay_cnt); vardelay_x2_sample = *(susp->vardelay_ptr); while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the s1 input sample block: */ susp_check_term_log_samples(s1, s1_ptr, s1_cnt); togo = min(togo, susp->s1_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = to_stop; } } n = togo; offset_reg = susp->offset; vdscale_reg = susp->vdscale; maxdelay_reg = susp->maxdelay; bufflen_reg = susp->bufflen; index_reg = susp->index; buffer_reg = susp->buffer; vardelay_pHaSe_ReG = susp->vardelay_pHaSe; vardelay_x1_sample_reg = susp->vardelay_x1_sample; s1_ptr_reg = susp->s1_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ long phase; if (vardelay_pHaSe_ReG >= 1.0) { vardelay_x1_sample_reg = vardelay_x2_sample; /* pick up next sample as vardelay_x2_sample: */ susp->vardelay_ptr++; susp_took(vardelay_cnt, 1); vardelay_pHaSe_ReG -= 1.0; susp_check_term_samples_break(vardelay, vardelay_ptr, vardelay_cnt, vardelay_x2_sample); } phase = (long) ( (vardelay_x1_sample_reg * (1 - vardelay_pHaSe_ReG) + vardelay_x2_sample * vardelay_pHaSe_ReG) * vdscale_reg + offset_reg); /* now phase should give number of samples of delay */ if (phase < 0) phase = 0; else if (phase > maxdelay_reg) phase = maxdelay_reg; phase = index_reg - phase; /* now phase is a location in the buffer_reg (before modulo) */ /* Time out to update the buffer_reg: * this is a tricky buffer_reg: buffer_reg[0] == buffer_reg[bufflen_reg] * the logical length is bufflen_reg, but the actual length * is bufflen_reg + 1 to allow for a repeated sample at the * end. This allows for efficient interpolation. */ buffer_reg[index_reg++] = (s1_scale_reg * *s1_ptr_reg++); if (index_reg >= bufflen_reg) { index_reg = 0; } /* back to the phase calculation: * use conditional instead of modulo */ if (phase < 0) phase += bufflen_reg; *out_ptr_reg++ = (sample_type) (buffer_reg[phase]);; vardelay_pHaSe_ReG += vardelay_pHaSe_iNcR_rEg; } while (--n); /* inner loop */ togo -= n; susp->bufflen = bufflen_reg; susp->index = index_reg; susp->vardelay_pHaSe = vardelay_pHaSe_ReG; susp->vardelay_x1_sample = vardelay_x1_sample_reg; /* using s1_ptr_reg is a bad idea on RS/6000: */ susp->s1_ptr += togo; out_ptr += togo; susp_took(s1_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; } } /* tapf_si_fetch */ void tapf_sr_fetch(register tapf_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ sample_type vardelay_DeLtA; sample_type vardelay_val; sample_type vardelay_x2_sample; int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register double offset_reg; register double vdscale_reg; register long maxdelay_reg; register long bufflen_reg; register long index_reg; register sample_type * buffer_reg; register sample_type s1_scale_reg = susp->s1->scale; register sample_block_values_type s1_ptr_reg; falloc_sample_block(out, "tapf_sr_fetch"); out_ptr = out->samples; snd_list->block = out; /* make sure sounds are primed with first values */ if (!susp->started) { susp->started = true; susp->vardelay_pHaSe = 1.0; } susp_check_term_samples(vardelay, vardelay_ptr, vardelay_cnt); vardelay_x2_sample = *(susp->vardelay_ptr); while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the s1 input sample block: */ susp_check_term_log_samples(s1, s1_ptr, s1_cnt); togo = min(togo, susp->s1_cnt); /* grab next vardelay_x2_sample when phase goes past 1.0; */ /* we use vardelay_n (computed below) to avoid roundoff errors: */ if (susp->vardelay_n <= 0) { susp->vardelay_x1_sample = vardelay_x2_sample; susp->vardelay_ptr++; susp_took(vardelay_cnt, 1); susp->vardelay_pHaSe -= 1.0; susp_check_term_samples(vardelay, vardelay_ptr, vardelay_cnt); vardelay_x2_sample = *(susp->vardelay_ptr); /* vardelay_n gets number of samples before phase exceeds 1.0: */ susp->vardelay_n = (long) ((1.0 - susp->vardelay_pHaSe) * susp->output_per_vardelay); } togo = min(togo, susp->vardelay_n); vardelay_DeLtA = (sample_type) ((vardelay_x2_sample - susp->vardelay_x1_sample) * susp->vardelay_pHaSe_iNcR); vardelay_val = (sample_type) (susp->vardelay_x1_sample * (1.0 - susp->vardelay_pHaSe) + vardelay_x2_sample * susp->vardelay_pHaSe); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = to_stop; } } n = togo; offset_reg = susp->offset; vdscale_reg = susp->vdscale; maxdelay_reg = susp->maxdelay; bufflen_reg = susp->bufflen; index_reg = susp->index; buffer_reg = susp->buffer; s1_ptr_reg = susp->s1_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ long phase; phase = (long) (vardelay_val * vdscale_reg + offset_reg); /* now phase should give number of samples of delay */ if (phase < 0) phase = 0; else if (phase > maxdelay_reg) phase = maxdelay_reg; phase = index_reg - phase; /* now phase is a location in the buffer_reg (before modulo) */ /* Time out to update the buffer_reg: * this is a tricky buffer_reg: buffer_reg[0] == buffer_reg[bufflen_reg] * the logical length is bufflen_reg, but the actual length * is bufflen_reg + 1 to allow for a repeated sample at the * end. This allows for efficient interpolation. */ buffer_reg[index_reg++] = (s1_scale_reg * *s1_ptr_reg++); if (index_reg >= bufflen_reg) { index_reg = 0; } /* back to the phase calculation: * use conditional instead of modulo */ if (phase < 0) phase += bufflen_reg; *out_ptr_reg++ = (sample_type) (buffer_reg[phase]);; vardelay_val += vardelay_DeLtA; } while (--n); /* inner loop */ susp->bufflen = bufflen_reg; susp->index = index_reg; /* using s1_ptr_reg is a bad idea on RS/6000: */ susp->s1_ptr += togo; out_ptr += togo; susp_took(s1_cnt, togo); susp->vardelay_pHaSe += togo * susp->vardelay_pHaSe_iNcR; susp->vardelay_n -= togo; cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; } } /* tapf_sr_fetch */ void tapf_toss_fetch(susp, snd_list) register tapf_susp_type susp; snd_list_type snd_list; { long final_count = susp->susp.toss_cnt; time_type final_time = susp->susp.t0; long n; /* fetch samples from s1 up to final_time for this block of zeros */ while ((round((final_time - susp->s1->t0) * susp->s1->sr)) >= susp->s1->current) susp_get_samples(s1, s1_ptr, s1_cnt); /* fetch samples from vardelay up to final_time for this block of zeros */ while ((round((final_time - susp->vardelay->t0) * susp->vardelay->sr)) >= susp->vardelay->current) susp_get_samples(vardelay, vardelay_ptr, vardelay_cnt); /* convert to normal processing when we hit final_count */ /* we want each signal positioned at final_time */ n = round((final_time - susp->s1->t0) * susp->s1->sr - (susp->s1->current - susp->s1_cnt)); susp->s1_ptr += n; susp_took(s1_cnt, n); n = round((final_time - susp->vardelay->t0) * susp->vardelay->sr - (susp->vardelay->current - susp->vardelay_cnt)); susp->vardelay_ptr += n; susp_took(vardelay_cnt, n); susp->susp.fetch = susp->susp.keep_fetch; (*(susp->susp.fetch))(susp, snd_list); } void tapf_mark(tapf_susp_type susp) { sound_xlmark(susp->s1); sound_xlmark(susp->vardelay); } void tapf_free(tapf_susp_type susp) { free(susp->buffer); sound_unref(susp->s1); sound_unref(susp->vardelay); ffree_generic(susp, sizeof(tapf_susp_node), "tapf_free"); } void tapf_print_tree(tapf_susp_type susp, int n) { indent(n); stdputstr("s1:"); sound_print_tree_1(susp->s1, n); indent(n); stdputstr("vardelay:"); sound_print_tree_1(susp->vardelay, n); } sound_type snd_make_tapf(sound_type s1, double offset, sound_type vardelay, double maxdelay) { register tapf_susp_type susp; rate_type sr = s1->sr; time_type t0 = max(s1->t0, vardelay->t0); int interp_desc = 0; sample_type scale_factor = 1.0F; time_type t0_min = t0; falloc_generic(susp, tapf_susp_node, "snd_make_tapf"); susp->offset = offset * s1->sr; susp->vdscale = vardelay->scale * s1->sr; susp->maxdelay = (long)(maxdelay * s1->sr); susp->bufflen = max(2, (long) (susp->maxdelay + 0.5)); susp->index = susp->bufflen; susp->buffer = (sample_type *) calloc(susp->bufflen + 1, sizeof(sample_type)); /* select a susp fn based on sample rates */ interp_desc = (interp_desc << 2) + interp_style(s1, sr); interp_desc = (interp_desc << 2) + interp_style(vardelay, sr); switch (interp_desc) { case INTERP_ns: /* handled below */ case INTERP_nn: /* handled below */ case INTERP_ss: /* handled below */ case INTERP_sn: susp->susp.fetch = tapf_sn_fetch; break; case INTERP_ni: /* handled below */ case INTERP_si: susp->susp.fetch = tapf_si_fetch; break; case INTERP_nr: /* handled below */ case INTERP_sr: susp->susp.fetch = tapf_sr_fetch; break; default: snd_badsr(); break; } susp->terminate_cnt = UNKNOWN; /* handle unequal start times, if any */ if (t0 < s1->t0) sound_prepend_zeros(s1, t0); if (t0 < vardelay->t0) sound_prepend_zeros(vardelay, t0); /* minimum start time over all inputs: */ t0_min = min(s1->t0, min(vardelay->t0, t0)); /* how many samples to toss before t0: */ susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5); if (susp->susp.toss_cnt > 0) { susp->susp.keep_fetch = susp->susp.fetch; susp->susp.fetch = tapf_toss_fetch; } /* initialize susp state */ susp->susp.free = tapf_free; susp->susp.sr = sr; susp->susp.t0 = t0; susp->susp.mark = tapf_mark; susp->susp.print_tree = tapf_print_tree; susp->susp.name = "tapf"; susp->logically_stopped = false; susp->susp.log_stop_cnt = logical_stop_cnt_cvt(s1); susp->started = false; susp->susp.current = 0; susp->s1 = s1; susp->s1_cnt = 0; susp->vardelay = vardelay; susp->vardelay_cnt = 0; susp->vardelay_pHaSe = 0.0; susp->vardelay_pHaSe_iNcR = vardelay->sr / sr; susp->vardelay_n = 0; susp->output_per_vardelay = sr / vardelay->sr; return sound_create((snd_susp_type)susp, t0, sr, scale_factor); } sound_type snd_tapf(sound_type s1, double offset, sound_type vardelay, double maxdelay) { sound_type s1_copy = sound_copy(s1); sound_type vardelay_copy = sound_copy(vardelay); return snd_make_tapf(s1_copy, offset, vardelay_copy, maxdelay); }