#include "stdio.h" #ifndef mips #include "stdlib.h" #endif #include "xlisp.h" #include "sound.h" #include "falloc.h" #include "cext.h" #include "tone.h" void tone_free(); typedef struct tone_susp_struct { snd_susp_node susp; long terminate_cnt; boolean logically_stopped; sound_type input; long input_cnt; sample_block_values_type input_ptr; double c2; double c1; double prev; } tone_susp_node, *tone_susp_type; void tone_n_fetch(register tone_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register double c2_reg; register double c1_reg; register double prev_reg; register sample_block_values_type input_ptr_reg; falloc_sample_block(out, "tone_n_fetch"); out_ptr = out->samples; snd_list->block = out; while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the input input sample block: */ susp_check_term_log_samples(input, input_ptr, input_cnt); togo = min(togo, susp->input_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = to_stop; } } n = togo; c2_reg = susp->c2; c1_reg = susp->c1; prev_reg = susp->prev; input_ptr_reg = susp->input_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ *out_ptr_reg++ = (sample_type) (prev_reg = c1_reg * *input_ptr_reg++ + c2_reg * prev_reg); } while (--n); /* inner loop */ susp->prev = prev_reg; /* using input_ptr_reg is a bad idea on RS/6000: */ susp->input_ptr += togo; out_ptr += togo; susp_took(input_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; } } /* tone_n_fetch */ void tone_toss_fetch(susp, snd_list) register tone_susp_type susp; snd_list_type snd_list; { long final_count = susp->susp.toss_cnt; time_type final_time = susp->susp.t0; long n; /* fetch samples from input up to final_time for this block of zeros */ while ((round((final_time - susp->input->t0) * susp->input->sr)) >= susp->input->current) susp_get_samples(input, input_ptr, input_cnt); /* convert to normal processing when we hit final_count */ /* we want each signal positioned at final_time */ n = round((final_time - susp->input->t0) * susp->input->sr - (susp->input->current - susp->input_cnt)); susp->input_ptr += n; susp_took(input_cnt, n); susp->susp.fetch = susp->susp.keep_fetch; (*(susp->susp.fetch))(susp, snd_list); } void tone_mark(tone_susp_type susp) { sound_xlmark(susp->input); } void tone_free(tone_susp_type susp) { sound_unref(susp->input); ffree_generic(susp, sizeof(tone_susp_node), "tone_free"); } void tone_print_tree(tone_susp_type susp, int n) { indent(n); stdputstr("input:"); sound_print_tree_1(susp->input, n); } sound_type snd_make_tone(sound_type input, double hz) { register tone_susp_type susp; double b; rate_type sr = input->sr; time_type t0 = input->t0; int interp_desc = 0; sample_type scale_factor = 1.0F; time_type t0_min = t0; falloc_generic(susp, tone_susp_node, "snd_make_tone"); b = 2.0 - cos(hz * PI2 / input->sr); susp->c2 = b - sqrt((b * b) - 1.0); susp->c1 = (1.0 - susp->c2) * input->scale; susp->prev = 0.0; susp->susp.fetch = tone_n_fetch; susp->terminate_cnt = UNKNOWN; /* handle unequal start times, if any */ if (t0 < input->t0) sound_prepend_zeros(input, t0); /* minimum start time over all inputs: */ t0_min = min(input->t0, t0); /* how many samples to toss before t0: */ susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5); if (susp->susp.toss_cnt > 0) { susp->susp.keep_fetch = susp->susp.fetch; susp->susp.fetch = tone_toss_fetch; } /* initialize susp state */ susp->susp.free = tone_free; susp->susp.sr = sr; susp->susp.t0 = t0; susp->susp.mark = tone_mark; susp->susp.print_tree = tone_print_tree; susp->susp.name = "tone"; susp->logically_stopped = false; susp->susp.log_stop_cnt = logical_stop_cnt_cvt(input); susp->susp.current = 0; susp->input = input; susp->input_cnt = 0; return sound_create((snd_susp_type)susp, t0, sr, scale_factor); } sound_type snd_tone(sound_type input, double hz) { sound_type input_copy = sound_copy(input); return snd_make_tone(input_copy, hz); }