#include "stdio.h" #ifndef mips #include "stdlib.h" #endif #include "xlisp.h" #include "sound.h" #include "falloc.h" #include "cext.h" #include "upsample.h" void up_free(); typedef struct up_susp_struct { snd_susp_node susp; boolean started; long terminate_cnt; boolean logically_stopped; sound_type input; long input_cnt; sample_block_values_type input_ptr; /* support for interpolation of input */ sample_type input_x1_sample; double input_pHaSe; double input_pHaSe_iNcR; /* support for ramp between samples of input */ double output_per_input; long input_n; } up_susp_node, *up_susp_type; void up_n_fetch(register up_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register sample_block_values_type input_ptr_reg; falloc_sample_block(out, "up_n_fetch"); out_ptr = out->samples; snd_list->block = out; while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the input input sample block: */ susp_check_term_log_samples(input, input_ptr, input_cnt); togo = min(togo, susp->input_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = to_stop; } } n = togo; input_ptr_reg = susp->input_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ *out_ptr_reg++ = (sample_type) *input_ptr_reg++; } while (--n); /* inner loop */ /* using input_ptr_reg is a bad idea on RS/6000: */ susp->input_ptr += togo; out_ptr += togo; susp_took(input_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; } } /* up_n_fetch */ void up_i_fetch(register up_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ sample_type input_x2_sample; int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register double input_pHaSe_iNcR_rEg = susp->input_pHaSe_iNcR; register double input_pHaSe_ReG; register sample_type input_x1_sample_reg; falloc_sample_block(out, "up_i_fetch"); out_ptr = out->samples; snd_list->block = out; /* make sure sounds are primed with first values */ if (!susp->started) { susp->started = true; susp_check_term_log_samples(input, input_ptr, input_cnt); susp->input_x1_sample = susp_fetch_sample(input, input_ptr, input_cnt); } susp_check_term_log_samples(input, input_ptr, input_cnt); input_x2_sample = susp_current_sample(input, input_ptr); while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = to_stop; } } n = togo; input_pHaSe_ReG = susp->input_pHaSe; input_x1_sample_reg = susp->input_x1_sample; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ if (input_pHaSe_ReG >= 1.0) { input_x1_sample_reg = input_x2_sample; /* pick up next sample as input_x2_sample: */ susp->input_ptr++; susp_took(input_cnt, 1); input_pHaSe_ReG -= 1.0; susp_check_term_log_samples_break(input, input_ptr, input_cnt, input_x2_sample); } *out_ptr_reg++ = (sample_type) (input_x1_sample_reg * (1 - input_pHaSe_ReG) + input_x2_sample * input_pHaSe_ReG); input_pHaSe_ReG += input_pHaSe_iNcR_rEg; } while (--n); /* inner loop */ togo -= n; susp->input_pHaSe = input_pHaSe_ReG; susp->input_x1_sample = input_x1_sample_reg; out_ptr += togo; cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; } } /* up_i_fetch */ void up_r_fetch(register up_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ sample_type input_DeLtA; sample_type input_val; sample_type input_x2_sample; int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; falloc_sample_block(out, "up_r_fetch"); out_ptr = out->samples; snd_list->block = out; /* make sure sounds are primed with first values */ if (!susp->started) { susp->started = true; susp->input_pHaSe = 1.0; } susp_check_term_log_samples(input, input_ptr, input_cnt); input_x2_sample = susp_current_sample(input, input_ptr); while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* grab next input_x2_sample when phase goes past 1.0; */ /* we use input_n (computed below) to avoid roundoff errors: */ if (susp->input_n <= 0) { susp->input_x1_sample = input_x2_sample; susp->input_ptr++; susp_took(input_cnt, 1); susp->input_pHaSe -= 1.0; susp_check_term_log_samples(input, input_ptr, input_cnt); input_x2_sample = susp_current_sample(input, input_ptr); /* input_n gets number of samples before phase exceeds 1.0: */ susp->input_n = (long) ((1.0 - susp->input_pHaSe) * susp->output_per_input); } togo = min(togo, susp->input_n); input_DeLtA = (sample_type) ((input_x2_sample - susp->input_x1_sample) * susp->input_pHaSe_iNcR); input_val = (sample_type) (susp->input_x1_sample * (1.0 - susp->input_pHaSe) + input_x2_sample * susp->input_pHaSe); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = to_stop; } } n = togo; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ *out_ptr_reg++ = (sample_type) input_val; input_val += input_DeLtA; } while (--n); /* inner loop */ out_ptr += togo; susp->input_pHaSe += togo * susp->input_pHaSe_iNcR; susp->input_n -= togo; cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; } } /* up_r_fetch */ void up_toss_fetch(susp, snd_list) register up_susp_type susp; snd_list_type snd_list; { long final_count = susp->susp.toss_cnt; time_type final_time = susp->susp.t0; long n; /* fetch samples from input up to final_time for this block of zeros */ while ((round((final_time - susp->input->t0) * susp->input->sr)) >= susp->input->current) susp_get_samples(input, input_ptr, input_cnt); /* convert to normal processing when we hit final_count */ /* we want each signal positioned at final_time */ n = round((final_time - susp->input->t0) * susp->input->sr - (susp->input->current - susp->input_cnt)); susp->input_ptr += n; susp_took(input_cnt, n); susp->susp.fetch = susp->susp.keep_fetch; (*(susp->susp.fetch))(susp, snd_list); } void up_mark(up_susp_type susp) { sound_xlmark(susp->input); } void up_free(up_susp_type susp) { sound_unref(susp->input); ffree_generic(susp, sizeof(up_susp_node), "up_free"); } void up_print_tree(up_susp_type susp, int n) { indent(n); stdputstr("input:"); sound_print_tree_1(susp->input, n); } sound_type snd_make_up(rate_type sr, sound_type input) { register up_susp_type susp; /* sr specified as input parameter */ time_type t0 = input->t0; int interp_desc = 0; sample_type scale_factor = 1.0F; time_type t0_min = t0; /* combine scale factors of linear inputs (INPUT) */ scale_factor *= input->scale; input->scale = 1.0F; /* try to push scale_factor back to a low sr input */ if (input->sr < sr) { input->scale = scale_factor; scale_factor = 1.0F; } if (input->sr > sr) { sound_unref(input); xlfail("snd-up: output sample rate must be higher than input"); } falloc_generic(susp, up_susp_node, "snd_make_up"); /* select a susp fn based on sample rates */ interp_desc = (interp_desc << 2) + interp_style(input, sr); switch (interp_desc) { case INTERP_n: susp->susp.fetch = up_n_fetch; break; case INTERP_i: susp->susp.fetch = up_i_fetch; break; case INTERP_r: susp->susp.fetch = up_r_fetch; break; default: snd_badsr(); break; } susp->terminate_cnt = UNKNOWN; /* handle unequal start times, if any */ if (t0 < input->t0) sound_prepend_zeros(input, t0); /* minimum start time over all inputs: */ t0_min = min(input->t0, t0); /* how many samples to toss before t0: */ susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5); if (susp->susp.toss_cnt > 0) { susp->susp.keep_fetch = susp->susp.fetch; susp->susp.fetch = up_toss_fetch; } /* initialize susp state */ susp->susp.free = up_free; susp->susp.sr = sr; susp->susp.t0 = t0; susp->susp.mark = up_mark; susp->susp.print_tree = up_print_tree; susp->susp.name = "up"; susp->logically_stopped = false; susp->susp.log_stop_cnt = logical_stop_cnt_cvt(input); susp->started = false; susp->susp.current = 0; susp->input = input; susp->input_cnt = 0; susp->input_pHaSe = 0.0; susp->input_pHaSe_iNcR = input->sr / sr; susp->input_n = 0; susp->output_per_input = sr / input->sr; return sound_create((snd_susp_type)susp, t0, sr, scale_factor); } sound_type snd_up(rate_type sr, sound_type input) { sound_type input_copy = sound_copy(input); return snd_make_up(sr, input_copy); }