/********************************************************************** FFT.cpp Dominic Mazzoni September 2000 *******************************************************************//*! \file FFT.cpp \brief Fast Fourier Transform routines. This file contains a few FFT routines, including a real-FFT routine that is almost twice as fast as a normal complex FFT, and a power spectrum routine when you know you don't care about phase information. Some of this code was based on a free implementation of an FFT by Don Cross, available on the web at: http://www.intersrv.com/~dcross/fft.html The basic algorithm for his code was based on Numerican Recipes in Fortran. I optimized his code further by reducing array accesses, caching the bit reversal table, and eliminating float-to-double conversions, and I added the routines to calculate a real FFT and a real power spectrum. *//*******************************************************************/ /* Salvo Ventura - November 2006 Added more window functions: * 4: Blackman * 5: Blackman-Harris * 6: Welch * 7: Gaussian(a=2.5) * 8: Gaussian(a=3.5) * 9: Gaussian(a=4.5) */ #include #include #include #include #include "FFT.h" int **gFFTBitTable = NULL; const int MaxFastBits = 16; /* Declare Static functions */ static int IsPowerOfTwo(int x); static int NumberOfBitsNeeded(int PowerOfTwo); static int ReverseBits(int index, int NumBits); static void InitFFT(); int IsPowerOfTwo(int x) { if (x < 2) return false; if (x & (x - 1)) /* Thanks to 'byang' for this cute trick! */ return false; return true; } int NumberOfBitsNeeded(int PowerOfTwo) { int i; if (PowerOfTwo < 2) { fprintf(stderr, "Error: FFT called with size %d\n", PowerOfTwo); exit(1); } for (i = 0;; i++) if (PowerOfTwo & (1 << i)) return i; } int ReverseBits(int index, int NumBits) { int i, rev; for (i = rev = 0; i < NumBits; i++) { rev = (rev << 1) | (index & 1); index >>= 1; } return rev; } void InitFFT() { gFFTBitTable = new int *[MaxFastBits]; int len = 2; for (int b = 1; b <= MaxFastBits; b++) { gFFTBitTable[b - 1] = new int[len]; for (int i = 0; i < len; i++) gFFTBitTable[b - 1][i] = ReverseBits(i, b); len <<= 1; } } #ifdef EXPERIMENTAL_USE_REALFFTF #include "RealFFTf.h" #endif void DeinitFFT() { if (gFFTBitTable) { for (int b = 1; b <= MaxFastBits; b++) { delete[] gFFTBitTable[b-1]; } delete[] gFFTBitTable; } #ifdef EXPERIMENTAL_USE_REALFFTF // Deallocate any unused RealFFTf tables CleanupFFT(); #endif } inline int FastReverseBits(int i, int NumBits) { if (NumBits <= MaxFastBits) return gFFTBitTable[NumBits - 1][i]; else return ReverseBits(i, NumBits); } /* * Complex Fast Fourier Transform */ void FFT(int NumSamples, bool InverseTransform, float *RealIn, float *ImagIn, float *RealOut, float *ImagOut) { int NumBits; /* Number of bits needed to store indices */ int i, j, k, n; int BlockSize, BlockEnd; double angle_numerator = 2.0 * M_PI; double tr, ti; /* temp real, temp imaginary */ if (!IsPowerOfTwo(NumSamples)) { fprintf(stderr, "%d is not a power of two\n", NumSamples); exit(1); } if (!gFFTBitTable) InitFFT(); if (!InverseTransform) angle_numerator = -angle_numerator; NumBits = NumberOfBitsNeeded(NumSamples); /* ** Do simultaneous data copy and bit-reversal ordering into outputs... */ for (i = 0; i < NumSamples; i++) { j = FastReverseBits(i, NumBits); RealOut[j] = RealIn[i]; ImagOut[j] = (ImagIn == NULL) ? 0.0 : ImagIn[i]; } /* ** Do the FFT itself... */ BlockEnd = 1; for (BlockSize = 2; BlockSize <= NumSamples; BlockSize <<= 1) { double delta_angle = angle_numerator / (double) BlockSize; double sm2 = sin(-2 * delta_angle); double sm1 = sin(-delta_angle); double cm2 = cos(-2 * delta_angle); double cm1 = cos(-delta_angle); double w = 2 * cm1; double ar0, ar1, ar2, ai0, ai1, ai2; for (i = 0; i < NumSamples; i += BlockSize) { ar2 = cm2; ar1 = cm1; ai2 = sm2; ai1 = sm1; for (j = i, n = 0; n < BlockEnd; j++, n++) { ar0 = w * ar1 - ar2; ar2 = ar1; ar1 = ar0; ai0 = w * ai1 - ai2; ai2 = ai1; ai1 = ai0; k = j + BlockEnd; tr = ar0 * RealOut[k] - ai0 * ImagOut[k]; ti = ar0 * ImagOut[k] + ai0 * RealOut[k]; RealOut[k] = RealOut[j] - tr; ImagOut[k] = ImagOut[j] - ti; RealOut[j] += tr; ImagOut[j] += ti; } } BlockEnd = BlockSize; } /* ** Need to normalize if inverse transform... */ if (InverseTransform) { float denom = (float) NumSamples; for (i = 0; i < NumSamples; i++) { RealOut[i] /= denom; ImagOut[i] /= denom; } } } /* * Real Fast Fourier Transform * * This function was based on the code in Numerical Recipes in C. * In Num. Rec., the inner loop is based on a single 1-based array * of interleaved real and imaginary numbers. Because we have two * separate zero-based arrays, our indices are quite different. * Here is the correspondence between Num. Rec. indices and our indices: * * i1 <-> real[i] * i2 <-> imag[i] * i3 <-> real[n/2-i] * i4 <-> imag[n/2-i] */ void RealFFT(int NumSamples, float *RealIn, float *RealOut, float *ImagOut) { #ifdef EXPERIMENTAL_USE_REALFFTF // Remap to RealFFTf() function int i; HFFT hFFT = GetFFT(NumSamples); float *pFFT = new float[NumSamples]; // Copy the data into the processing buffer for(i=0; iBitReversed[i] ]; ImagOut[i]=pFFT[hFFT->BitReversed[i]+1]; } // Handle the (real-only) DC and Fs/2 bins RealOut[0] = pFFT[0]; RealOut[i] = pFFT[1]; ImagOut[0] = ImagOut[i] = 0; // Fill in the upper half using symmetry properties for(i++ ; iBitReversed[i] ]*pFFT[hFFT->BitReversed[i] ]) + (pFFT[hFFT->BitReversed[i]+1]*pFFT[hFFT->BitReversed[i]+1]); } // Handle the (real-only) DC and Fs/2 bins Out[0] = pFFT[0]*pFFT[0]; Out[i] = pFFT[1]*pFFT[1]; delete [] pFFT; ReleaseFFT(hFFT); #else // EXPERIMENTAL_USE_REALFFTF int Half = NumSamples / 2; int i; float theta = M_PI / Half; float *tmpReal = new float[Half]; float *tmpImag = new float[Half]; float *RealOut = new float[Half]; float *ImagOut = new float[Half]; for (i = 0; i < Half; i++) { tmpReal[i] = In[2 * i]; tmpImag[i] = In[2 * i + 1]; } FFT(Half, 0, tmpReal, tmpImag, RealOut, ImagOut); float wtemp = float (sin(0.5 * theta)); float wpr = -2.0 * wtemp * wtemp; float wpi = -1.0 * float (sin(theta)); float wr = 1.0 + wpr; float wi = wpi; int i3; float h1r, h1i, h2r, h2i, rt, it; for (i = 1; i < Half / 2; i++) { i3 = Half - i; h1r = 0.5 * (RealOut[i] + RealOut[i3]); h1i = 0.5 * (ImagOut[i] - ImagOut[i3]); h2r = 0.5 * (ImagOut[i] + ImagOut[i3]); h2i = -0.5 * (RealOut[i] - RealOut[i3]); rt = h1r + wr * h2r - wi * h2i; it = h1i + wr * h2i + wi * h2r; Out[i] = rt * rt + it * it; rt = h1r - wr * h2r + wi * h2i; it = -h1i + wr * h2i + wi * h2r; Out[i3] = rt * rt + it * it; wr = (wtemp = wr) * wpr - wi * wpi + wr; wi = wi * wpr + wtemp * wpi + wi; } rt = (h1r = RealOut[0]) + ImagOut[0]; it = h1r - ImagOut[0]; Out[0] = rt * rt + it * it; rt = RealOut[Half / 2]; it = ImagOut[Half / 2]; Out[Half / 2] = rt * rt + it * it; delete[]tmpReal; delete[]tmpImag; delete[]RealOut; delete[]ImagOut; #endif // EXPERIMENTAL_USE_REALFFTF } /* * Windowing Functions */ int NumWindowFuncs() { return 10; } const wxChar *WindowFuncName(int whichFunction) { switch (whichFunction) { default: case 0: return _("Rectangular"); case 1: return wxT("Bartlett"); case 2: return wxT("Hamming"); case 3: return wxT("Hanning"); case 4: return wxT("Blackman"); case 5: return wxT("Blackman-Harris"); case 6: return wxT("Welch"); case 7: return wxT("Gaussian(a=2.5)"); case 8: return wxT("Gaussian(a=3.5)"); case 9: return wxT("Gaussian(a=4.5)"); } } void WindowFunc(int whichFunction, int NumSamples, float *in) { int i; double A; if (whichFunction == 1) { // Bartlett (triangular) window for (i = 0; i < NumSamples / 2; i++) { in[i] *= (i / (float) (NumSamples / 2)); in[i + (NumSamples / 2)] *= (1.0 - (i / (float) (NumSamples / 2))); } } if (whichFunction == 2) { // Hamming for (i = 0; i < NumSamples; i++) in[i] *= 0.54 - 0.46 * cos(2 * M_PI * i / (NumSamples - 1)); } if (whichFunction == 3) { // Hanning for (i = 0; i < NumSamples; i++) in[i] *= 0.50 - 0.50 * cos(2 * M_PI * i / (NumSamples - 1)); } if (whichFunction == 4) { // Blackman for (i = 0; i < NumSamples; i++) { in[i] *= 0.42 - 0.5 * cos (2 * M_PI * i / (NumSamples - 1)) + 0.08 * cos (4 * M_PI * i / (NumSamples - 1)); } } if (whichFunction == 5) { // Blackman-Harris for (i = 0; i < NumSamples; i++) { in[i] *= 0.35875 - 0.48829 * cos(2 * M_PI * i /(NumSamples-1)) + 0.14128 * cos(4 * M_PI * i/(NumSamples-1)) - 0.01168 * cos(6 * M_PI * i/(NumSamples-1)); } } if (whichFunction == 6) { // Welch for (i = 0; i < NumSamples; i++) { in[i] *= 4*i/(float)NumSamples*(1-(i/(float)NumSamples)); } } if (whichFunction == 7) { // Gaussian (a=2.5) // Precalculate some values, and simplify the fmla to try and reduce overhead A=-2*2.5*2.5; for (i = 0; i < NumSamples; i++) { // full // in[i] *= exp(-0.5*(A*((i-NumSamples/2)/NumSamples/2))*(A*((i-NumSamples/2)/NumSamples/2))); // reduced in[i] *= exp(A*(0.25 + ((i/(float)NumSamples)*(i/(float)NumSamples)) - (i/(float)NumSamples))); } } if (whichFunction == 8) { // Gaussian (a=3.5) A=-2*3.5*3.5; for (i = 0; i < NumSamples; i++) { // reduced in[i] *= exp(A*(0.25 + ((i/(float)NumSamples)*(i/(float)NumSamples)) - (i/(float)NumSamples))); } } if (whichFunction == 9) { // Gaussian (a=4.5) A=-2*4.5*4.5; for (i = 0; i < NumSamples; i++) { // reduced in[i] *= exp(A*(0.25 + ((i/(float)NumSamples)*(i/(float)NumSamples)) - (i/(float)NumSamples))); } } } // Indentation settings for Vim and Emacs and unique identifier for Arch, a // version control system. Please do not modify past this point. // // Local Variables: // c-basic-offset: 3 // indent-tabs-mode: nil // End: // // vim: et sts=3 sw=3 // arch-tag: 47691958-d393-488c-abc5-81178ea2686e