/*********************************************************************** * Software License Agreement (BSD License) * * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. * * THE BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *************************************************************************/ #ifndef DIST_H #define DIST_H #include #include #include "flann/general.h" namespace flann { template inline T abs(T x) { return (x<0)?-x:x; } template<> inline int abs(int x) { return ::abs(x); } template<> inline float abs(float x) { return fabsf(x); } template<> inline double abs(double x) { return fabs(x); } template<> inline long double abs(long double x) { return fabsl(x); } template struct Accumulator { typedef T Type; }; template<> struct Accumulator { typedef float Type; }; template<> struct Accumulator { typedef float Type; }; template<> struct Accumulator { typedef float Type; }; template<> struct Accumulator { typedef float Type; }; template<> struct Accumulator { typedef float Type; }; template<> struct Accumulator { typedef float Type; }; /** * Squared Euclidean distance functor. * * This is the simpler, unrolled version. This is preferable for * very low dimensionality data (eg 3D points) */ template struct L2_Simple { typedef T ElementType; typedef typename Accumulator::Type ResultType; template ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const { ResultType result = ResultType(); ResultType diff; for(size_t i = 0; i < size; ++i ) { diff = *a++ - *b++; result += diff*diff; } return result; } template inline ResultType accum_dist(const U& a, const V& b, int dim) const { return (a-b)*(a-b); } }; /** * Squared Euclidean distance functor, optimized version */ template struct L2 { typedef T ElementType; typedef typename Accumulator::Type ResultType; /** * Compute the squared Euclidean distance between two vectors. * * This is highly optimised, with loop unrolling, as it is one * of the most expensive inner loops. * * The computation of squared root at the end is omitted for * efficiency. */ template ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const { ResultType result = ResultType(); ResultType diff0, diff1, diff2, diff3; Iterator1 last = a + size; Iterator1 lastgroup = last - 3; /* Process 4 items with each loop for efficiency. */ while (a < lastgroup) { diff0 = a[0] - b[0]; diff1 = a[1] - b[1]; diff2 = a[2] - b[2]; diff3 = a[3] - b[3]; result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3; a += 4; b += 4; if (worst_dist>0 && result>worst_dist) { return result; } } /* Process last 0-3 pixels. Not needed for standard vector lengths. */ while (a < last) { diff0 = *a++ - *b++; result += diff0 * diff0; } return result; } /** * Partial euclidean distance, using just one dimension. This is used by the * kd-tree when computing partial distances while traversing the tree. * * Squared root is omitted for efficiency. */ template inline ResultType accum_dist(const U& a, const V& b, int dim) const { return (a-b)*(a-b); } }; /* * Manhattan distance functor, optimized version */ template struct L1 { typedef T ElementType; typedef typename Accumulator::Type ResultType; /** * Compute the Manhattan (L_1) distance between two vectors. * * This is highly optimised, with loop unrolling, as it is one * of the most expensive inner loops. */ template ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const { ResultType result = ResultType(); ResultType diff0, diff1, diff2, diff3; Iterator1 last = a + size; Iterator1 lastgroup = last - 3; /* Process 4 items with each loop for efficiency. */ while (a < lastgroup) { diff0 = abs(a[0] - b[0]); diff1 = abs(a[1] - b[1]); diff2 = abs(a[2] - b[2]); diff3 = abs(a[3] - b[3]); result += diff0 + diff1 + diff2 + diff3; a += 4; b += 4; if (worst_dist>0 && result>worst_dist) { return result; } } /* Process last 0-3 pixels. Not needed for standard vector lengths. */ while (a < last) { diff0 = abs(*a++ - *b++); result += diff0; } return result; } /** * Partial distance, used by the kd-tree. */ template inline ResultType accum_dist(const U& a, const V& b, int dim) const { return abs(a-b); } }; template struct MinkowskiDistance { typedef T ElementType; typedef typename Accumulator::Type ResultType; int order; MinkowskiDistance(int order_) : order(order_) {}; /** * Compute the Minkowsky (L_p) distance between two vectors. * * This is highly optimised, with loop unrolling, as it is one * of the most expensive inner loops. * * The computation of squared root at the end is omitted for * efficiency. */ template ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const { ResultType result = ResultType(); ResultType diff0, diff1, diff2, diff3; Iterator1 last = a + size; Iterator1 lastgroup = last - 3; /* Process 4 items with each loop for efficiency. */ while (a < lastgroup) { diff0 = abs(a[0] - b[0]); diff1 = abs(a[1] - b[1]); diff2 = abs(a[2] - b[2]); diff3 = abs(a[3] - b[3]); result += pow(diff0,order) + pow(diff1,order) + pow(diff2,order) + pow(diff3,order); a += 4; b += 4; if (worst_dist>0 && result>worst_dist) { return result; } } /* Process last 0-3 pixels. Not needed for standard vector lengths. */ while (a < last) { diff0 = abs(*a++ - *b++); result += pow(diff0,order); } return result; } /** * Partial distance, used by the kd-tree. */ template inline ResultType accum_dist(const U& a, const V& b, int dim) const { return pow(static_cast(abs(a-b)),order); } }; template struct MaxDistance { typedef T ElementType; typedef typename Accumulator::Type ResultType; /** * Compute the max distance (L_infinity) between two vectors. * * This distance is not a valid kdtree distance, it's not dimensionwise additive. */ template ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const { ResultType result = ResultType(); ResultType diff0, diff1, diff2, diff3; Iterator1 last = a + size; Iterator1 lastgroup = last - 3; /* Process 4 items with each loop for efficiency. */ while (a < lastgroup) { diff0 = abs(a[0] - b[0]); diff1 = abs(a[1] - b[1]); diff2 = abs(a[2] - b[2]); diff3 = abs(a[3] - b[3]); if (diff0>result) result = diff0; if (diff1>result) result = diff1; if (diff2>result) result = diff2; if (diff3>result) result = diff3; a += 4; b += 4; if (worst_dist>0 && result>worst_dist) { return result; } } /* Process last 0-3 pixels. Not needed for standard vector lengths. */ while (a < last) { diff0 = abs(*a++ - *b++); result = (diff0>result) ? diff0 : result; } return result; } /* This distance functor is not dimension-wise additive, which * makes it an invalid kd-tree distance, not implementing the accum_dist method */ }; template struct HistIntersectionDistance { typedef T ElementType; typedef typename Accumulator::Type ResultType; /** * Compute the histogram intersection distance */ template ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const { ResultType result = ResultType(); ResultType diff0, diff1, diff2, diff3; ResultType min0, min1, min2, min3; Iterator1 last = a + size; Iterator1 lastgroup = last - 3; /* Process 4 items with each loop for efficiency. */ while (a < lastgroup) { min0 = a[0] < b[0] ? a[0] : b[0]; diff0 = a[0] + b[0] - 2*min0; min1 = a[1] < b[1] ? a[1] : b[1]; diff1 = a[1] + b[1] - 2*min1; min2 = a[2] < b[2] ? a[2] : b[2]; diff2 = a[2] + b[2] - 2*min2; min3 = a[3] < b[3] ? a[3] : b[3]; diff3 = a[3] + b[3] - 2*min3; result += diff0 +diff1 + diff2 + diff3; a += 4; b += 4; if (worst_dist>0 && result>worst_dist) { return result; } } /* Process last 0-3 pixels. Not needed for standard vector lengths. */ while (a < last) { min0 = *a < *b ? *a : *b; diff0 = *a++ + *b++ - 2*min0; result += diff0; } return result; } /** * Partial distance, used by the kd-tree. */ template inline ResultType accum_dist(const U& a, const V& b, int dim) const { return (a+b-2*(a struct HellingerDistance { typedef T ElementType; typedef typename Accumulator::Type ResultType; /** * Compute the histogram intersection distance */ template ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const { ResultType result = ResultType(); ResultType diff0, diff1, diff2, diff3; Iterator1 last = a + size; Iterator1 lastgroup = last - 3; /* Process 4 items with each loop for efficiency. */ while (a < lastgroup) { diff0 = sqrt(static_cast(a[0])) - sqrt(static_cast(b[0])); diff1 = sqrt(static_cast(a[1])) - sqrt(static_cast(b[1])); diff2 = sqrt(static_cast(a[2])) - sqrt(static_cast(b[2])); diff3 = sqrt(static_cast(a[3])) - sqrt(static_cast(b[3])); result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3; a += 4; b += 4; } while (a < last) { diff0 = sqrt(static_cast(*a++)) - sqrt(static_cast(*b++)); result += diff0 * diff0; } return result; } /** * Partial distance, used by the kd-tree. */ template inline ResultType accum_dist(const U& a, const V& b, int dim) const { return (sqrt(static_cast(a)) - sqrt(static_cast(b))); } }; template struct ChiSquareDistance { typedef T ElementType; typedef typename Accumulator::Type ResultType; /** * Compute the chi-square distance */ template ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const { ResultType result = ResultType(); ResultType sum, diff; Iterator1 last = a + size; while (a < last) { sum = *a + *b; if (sum>0) { diff = *a - *b; result += diff*diff/sum; } ++a; ++b; if (worst_dist>0 && result>worst_dist) { return result; } } return result; } /** * Partial distance, used by the kd-tree. */ template inline ResultType accum_dist(const U& a, const V& b, int dim) const { ResultType result = ResultType(); ResultType sum, diff; sum = a+b; if (sum>0) { diff = a-b; result = diff*diff/sum; } return result; } }; template struct KL_Divergence { typedef T ElementType; typedef typename Accumulator::Type ResultType; /** * Compute the Kullback–Leibler divergence */ template ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const { ResultType result = ResultType(); Iterator1 last = a + size; while (a < last) { if (*a != 0) { ResultType ratio = *a / *b; if (ratio>0) { result += *a * log(ratio); } } ++a; ++b; if (worst_dist>0 && result>worst_dist) { return result; } } return result; } /** * Partial distance, used by the kd-tree. */ template inline ResultType accum_dist(const U& a, const V& b, int dim) const { ResultType result = ResultType(); ResultType ratio = a / b; if (ratio>0) { result = a * log(ratio); } return result; } }; /* * This is a "zero iterator". It basically behaves like a zero filled * array to all algorithms that use arrays as iterators (STL style). * It's useful when there's a need to compute the distance between feature * and origin it and allows for better compiler optimisation than using a * zero-filled array. */ template struct ZeroIterator { T operator*() { return 0; } T operator[](int index) { return 0; } ZeroIterator& operator ++() { return *this; } ZeroIterator& operator ++(int) { return *this; } ZeroIterator& operator+=(int) { return *this; } }; } #endif //DIST_H