/*********************************************************************** * Software License Agreement (BSD License) * * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. * * THE BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *************************************************************************/ #ifndef TESTING_H #define TESTING_H #include #include #include #include "flann/general.h" #include "flann/util/matrix.h" #include "flann/algorithms/nn_index.h" #include "flann/util/result_set.h" #include "flann/util/logger.h" #include "flann/util/timer.h" namespace flann { FLANN_EXPORT int countCorrectMatches(int* neighbors, int* groundTruth, int n); template typename Distance::ResultType computeDistanceRaport(const Matrix& inputData, typename Distance::ElementType* target, int* neighbors, int* groundTruth, int veclen, int n, const Distance& distance) { typedef typename Distance::ResultType DistanceType; DistanceType ret = 0; for (int i=0;i float search_with_ground_truth(NNIndex& index, const Matrix& inputData, const Matrix& testData, const Matrix& matches, int nn, int checks, float& time, typename Distance::ResultType& dist, const Distance& distance, int skipMatches) { typedef typename Distance::ResultType DistanceType; if (matches.cols resultSet(nn+skipMatches); SearchParams searchParams(checks); int* indices = new int[nn+skipMatches]; DistanceType* dists = new DistanceType[nn+skipMatches]; int* neighbors = indices + skipMatches; int correct; DistanceType distR; StartStopTimer t; int repeats = 0; while (t.value<0.2) { repeats++; t.start(); correct = 0; distR = 0; for (size_t i = 0; i < testData.rows; i++) { resultSet.init(indices, dists); index.findNeighbors(resultSet, testData[i], searchParams); correct += countCorrectMatches(neighbors,matches[i], nn); distR += computeDistanceRaport(inputData, testData[i], neighbors, matches[i], testData.cols, nn, distance); } t.stop(); } time = t.value/repeats; delete[] indices; delete[] dists; float precicion = (float)correct/(nn*testData.rows); dist = distR/(testData.rows*nn); logger.info("%8d %10.4g %10.5g %10.5g %10.5g\n", checks, precicion, time, 1000.0 * time / testData.rows, dist); return precicion; } template float test_index_checks(NNIndex& index, const Matrix& inputData, const Matrix& testData, const Matrix& matches, int checks, float& precision, const Distance& distance, int nn = 1, int skipMatches = 0) { typedef typename Distance::ResultType DistanceType; logger.info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n"); logger.info("---------------------------------------------------------\n"); float time = 0; DistanceType dist = 0; precision = search_with_ground_truth(index, inputData, testData, matches, nn, checks, time, dist, distance, skipMatches); return time; } template float test_index_precision(NNIndex& index, const Matrix& inputData, const Matrix& testData, const Matrix& matches, float precision, int& checks, const Distance& distance, int nn = 1, int skipMatches = 0) { typedef typename Distance::ResultType DistanceType; const float SEARCH_EPS = 0.001; logger.info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n"); logger.info("---------------------------------------------------------\n"); int c2 = 1; float p2; int c1 = 1; float p1; float time; DistanceType dist; p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches); if (p2>precision) { logger.info("Got as close as I can\n"); checks = c2; return time; } while (p2SEARCH_EPS) { logger.info("Start linear estimation\n"); // after we got to values in the vecinity of the desired precision // use linear approximation get a better estimation cx = (c1+c2)/2; realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches); while (fabs(realPrecision-precision)>SEARCH_EPS) { if (realPrecision void test_index_precisions(NNIndex& index, const Matrix& inputData, const Matrix& testData, const Matrix& matches, float* precisions, int precisions_length, const Distance& distance, int nn = 1, int skipMatches = 0, float maxTime = 0) { typedef typename Distance::ResultType DistanceType; const float SEARCH_EPS = 0.001; // make sure precisions array is sorted std::sort(precisions, precisions+precisions_length); int pindex = 0; float precision = precisions[pindex]; logger.info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n"); logger.info("---------------------------------------------------------\n"); int c2 = 1; float p2; int c1 = 1; float p1; float time; DistanceType dist; p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches); // if precision for 1 run down the tree is already // better then some of the requested precisions, then // skip those while (precisions[pindex] 0 && time > maxTime && p2SEARCH_EPS) { logger.info("Start linear estimation\n"); // after we got to values in the vecinity of the desired precision // use linear approximation get a better estimation cx = (c1+c2)/2; realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches); while (fabs(realPrecision-precision)>SEARCH_EPS) { if (realPrecision