///////////////////////////////////////////////////////////////////////////////// // // Levenberg - Marquardt non-linear minimization algorithm // Copyright (C) 2004-05 Manolis Lourakis (lourakis@ics.forth.gr) // Institute of Computer Science, Foundation for Research & Technology - Hellas // Heraklion, Crete, Greece. // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // ///////////////////////////////////////////////////////////////////////////////// #ifndef LM_REAL // not included by lmbc.c #error This file should not be compiled directly! #endif /* precision-specific definitions */ #define FUNC_STATE LM_ADD_PREFIX(func_state) #define LNSRCH LM_ADD_PREFIX(lnsrch) #define BOXPROJECT LM_ADD_PREFIX(boxProject) #define BOXCHECK LM_ADD_PREFIX(boxCHECK) #define LEVMAR_BC_DER LM_ADD_PREFIX(levmar_bc_der) #define LEVMAR_BC_DIF LM_ADD_PREFIX(levmar_bc_dif) //CHECKME #define FDIF_FORW_JAC_APPROX LM_ADD_PREFIX(fdif_forw_jac_approx) #define FDIF_CENT_JAC_APPROX LM_ADD_PREFIX(fdif_cent_jac_approx) #define TRANS_MAT_MAT_MULT LM_ADD_PREFIX(trans_mat_mat_mult) #define LEVMAR_COVAR LM_ADD_PREFIX(levmar_covar) #define LMBC_DIF_DATA LM_ADD_PREFIX(lmbc_dif_data) #define LMBC_DIF_FUNC LM_ADD_PREFIX(lmbc_dif_func) #define LMBC_DIF_JACF LM_ADD_PREFIX(lmbc_dif_jacf) #ifdef HAVE_LAPACK #define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU) #define AX_EQ_B_CHOL LM_ADD_PREFIX(Ax_eq_b_Chol) #define AX_EQ_B_QR LM_ADD_PREFIX(Ax_eq_b_QR) #define AX_EQ_B_QRLS LM_ADD_PREFIX(Ax_eq_b_QRLS) #define AX_EQ_B_SVD LM_ADD_PREFIX(Ax_eq_b_SVD) #else #define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU_noLapack) #endif /* HAVE_LAPACK */ /* find the median of 3 numbers */ #define __MEDIAN3(a, b, c) ( ((a) >= (b))?\ ( ((c) >= (a))? (a) : ( ((c) <= (b))? (b) : (c) ) ) : \ ( ((c) >= (b))? (b) : ( ((c) <= (a))? (a) : (c) ) ) ) #define _POW_ CNST(2.1) struct FUNC_STATE{ int n, *nfev; LM_REAL *hx, *x; void *adata; }; static void LNSRCH(int m, LM_REAL *x, LM_REAL f, LM_REAL *g, LM_REAL *p, LM_REAL alpha, LM_REAL *xpls, LM_REAL *ffpls, void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), struct FUNC_STATE state, int *mxtake, int *iretcd, LM_REAL stepmx, LM_REAL steptl, LM_REAL *sx) { /* Find a next newton iterate by backtracking line search. * Specifically, finds a \lambda such that for a fixed alpha<0.5 (usually 1e-4), * f(x + \lambda*p) <= f(x) + alpha * \lambda * g^T*p * * Translated (with minor changes) from Schnabel, Koontz & Weiss uncmin.f, v1.3 * PARAMETERS : * m --> dimension of problem (i.e. number of variables) * x(m) --> old iterate: x[k-1] * f --> function value at old iterate, f(x) * g(m) --> gradient at old iterate, g(x), or approximate * p(m) --> non-zero newton step * alpha --> fixed constant < 0.5 for line search (see above) * xpls(m) <-- new iterate x[k] * ffpls <-- function value at new iterate, f(xpls) * func --> name of subroutine to evaluate function * state <--> information other than x and m that func requires. * state is not modified in xlnsrch (but can be modified by func). * iretcd <-- return code * mxtake <-- boolean flag indicating step of maximum length used * stepmx --> maximum allowable step size * steptl --> relative step size at which successive iterates * considered close enough to terminate algorithm * sx(m) --> diagonal scaling matrix for x, can be NULL * internal variables * sln newton length * rln relative length of newton step */ register int i; int firstback = 1; LM_REAL disc; LM_REAL a3, b; LM_REAL t1, t2, t3, lambda, tlmbda, rmnlmb; LM_REAL scl, rln, sln, slp; LM_REAL tmp1, tmp2; LM_REAL fpls, pfpls = 0., plmbda = 0.; /* -Wall */ f*=CNST(0.5); *mxtake = 0; *iretcd = 2; tmp1 = 0.; if(!sx) /* no scaling */ for (i = 0; i < m; ++i) tmp1 += p[i] * p[i]; else for (i = 0; i < m; ++i) tmp1 += sx[i] * sx[i] * p[i] * p[i]; sln = (LM_REAL)sqrt(tmp1); if (sln > stepmx) { /* newton step longer than maximum allowed */ scl = stepmx / sln; for(i=0; i=CNST(1.))? FABS(x[i]) : CNST(1.); tmp2 = FABS(p[i])/tmp1; if(rln < tmp2) rln = tmp2; } else for (i = 0; i < m; ++i) { tmp1 = (FABS(x[i])>=CNST(1.)/sx[i])? FABS(x[i]) : CNST(1.)/sx[i]; tmp2 = FABS(p[i])/tmp1; if(rln < tmp2) rln = tmp2; } rmnlmb = steptl / rln; lambda = CNST(1.0); /* check if new iterate satisfactory. generate new lambda if necessary. */ while(*iretcd > 1) { for (i = 0; i < m; ++i) xpls[i] = x[i] + lambda * p[i]; /* evaluate function at new point */ (*func)(xpls, state.hx, m, state.n, state.adata); for(i=0, tmp1=0.0; i stepmx * CNST(.99)) *mxtake = 1; return; } /* else : solution not (yet) found */ /* First find a point with a finite value */ if (lambda < rmnlmb) { /* no satisfactory xpls found sufficiently distinct from x */ *iretcd = 1; return; } else { /* calculate new lambda */ /* modifications to cover non-finite values */ if (fpls >= LM_REAL_MAX) { lambda *= CNST(0.1); firstback = 1; } else { if (firstback) { /* first backtrack: quadratic fit */ tlmbda = -lambda * slp / ((fpls - f - slp) * CNST(2.)); firstback = 0; } else { /* all subsequent backtracks: cubic fit */ t1 = fpls - f - lambda * slp; t2 = pfpls - f - plmbda * slp; t3 = CNST(1.) / (lambda - plmbda); a3 = CNST(3.) * t3 * (t1 / (lambda * lambda) - t2 / (plmbda * plmbda)); b = t3 * (t2 * lambda / (plmbda * plmbda) - t1 * plmbda / (lambda * lambda)); disc = b * b - a3 * slp; if (disc > b * b) /* only one positive critical point, must be minimum */ tlmbda = (-b + ((a3 < 0)? -(LM_REAL)sqrt(disc): (LM_REAL)sqrt(disc))) /a3; else /* both critical points positive, first is minimum */ tlmbda = (-b + ((a3 < 0)? (LM_REAL)sqrt(disc): -(LM_REAL)sqrt(disc))) /a3; if (tlmbda > lambda * CNST(.5)) tlmbda = lambda * CNST(.5); } plmbda = lambda; pfpls = fpls; if (tlmbda < lambda * CNST(.1)) lambda *= CNST(.1); else lambda = tlmbda; } } } } /* LNSRCH */ /* Projections to feasible set \Omega: P_{\Omega}(y) := arg min { ||x - y|| : x \in \Omega}, y \in R^m */ /* project vector p to a box shaped feasible set. p is a mx1 vector. * Either lb, ub can be NULL. If not NULL, they are mx1 vectors */ static void BOXPROJECT(LM_REAL *p, LM_REAL *lb, LM_REAL *ub, int m) { register int i; if(!lb){ /* no lower bounds */ if(!ub) /* no upper bounds */ return; else{ /* upper bounds only */ for(i=0; iub[i]) p[i]=ub[i]; } } else if(!ub){ /* lower bounds only */ for(i=0; iub[i]) return 0; return 1; } /* * This function seeks the parameter vector p that best describes the measurements * vector x under box constraints. * More precisely, given a vector function func : R^m --> R^n with n>=m, * it finds p s.t. func(p) ~= x, i.e. the squared second order (i.e. L2) norm of * e=x-func(p) is minimized under the constraints lb[i]<=p[i]<=ub[i]. * If no lower bound constraint applies for p[i], use -DBL_MAX/-FLT_MAX for lb[i]; * If no upper bound constraint applies for p[i], use DBL_MAX/FLT_MAX for ub[i]. * * This function requires an analytic jacobian. In case the latter is unavailable, * use LEVMAR_BC_DIF() bellow * * Returns the number of iterations (>=0) if successfull, -1 if failed * * For details, see C. Kanzow, N. Yamashita and M. Fukushima: "Levenberg-Marquardt * methods for constrained nonlinear equations with strong local convergence properties", * Journal of Computational and Applied Mathematics 172, 2004, pp. 375-397. * Also, see H.B. Nielsen's (http://www.imm.dtu.dk/~hbn) IMM/DTU tutorial on * unconrstrained Levenberg-Marquardt at http://www.imm.dtu.dk/courses/02611/nllsq.pdf */ int LEVMAR_BC_DER( void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in R^n */ void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata), /* function to evaluate the jacobian \part x / \part p */ LM_REAL *p, /* I/O: initial parameter estimates. On output has the estimated solution */ LM_REAL *x, /* I: measurement vector */ int m, /* I: parameter vector dimension (i.e. #unknowns) */ int n, /* I: measurement vector dimension */ LM_REAL *lb, /* I: vector of lower bounds. If NULL, no lower bounds apply */ LM_REAL *ub, /* I: vector of upper bounds. If NULL, no upper bounds apply */ int itmax, /* I: maximum number of iterations */ LM_REAL opts[4], /* I: minim. options [\mu, \epsilon1, \epsilon2, \epsilon3]. Respectively the scale factor for initial \mu, * stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2. Set to NULL for defaults to be used. * Note that ||J^T e||_inf is computed on free (not equal to lb[i] or ub[i]) variables only. */ LM_REAL info[LM_INFO_SZ], /* O: information regarding the minimization. Set to NULL if don't care * info[0]= ||e||_2 at initial p. * info[1-4]=[ ||e||_2, ||J^T e||_inf, ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p. * info[5]= # iterations, * info[6]=reason for terminating: 1 - stopped by small gradient J^T e * 2 - stopped by small Dp * 3 - stopped by itmax * 4 - singular matrix. Restart from current p with increased mu * 5 - no further error reduction is possible. Restart with increased mu * 6 - stopped by small ||e||_2 * info[7]= # function evaluations * info[8]= # jacobian evaluations */ LM_REAL *work, /* working memory, allocate if NULL */ LM_REAL *covar, /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */ void *adata) /* pointer to possibly additional data, passed uninterpreted to func & jacf. * Set to NULL if not needed */ { register int i, j, k, l; int worksz, freework=0, issolved; /* temp work arrays */ LM_REAL *e, /* nx1 */ *hx, /* \hat{x}_i, nx1 */ *jacTe, /* J^T e_i mx1 */ *jac, /* nxm */ *jacTjac, /* mxm */ *Dp, /* mx1 */ *diag_jacTjac, /* diagonal of J^T J, mx1 */ *pDp; /* p + Dp, mx1 */ register LM_REAL mu, /* damping constant */ tmp; /* mainly used in matrix & vector multiplications */ LM_REAL p_eL2, jacTe_inf, pDp_eL2; /* ||e(p)||_2, ||J^T e||_inf, ||e(p+Dp)||_2 */ LM_REAL p_L2, Dp_L2=LM_REAL_MAX, dF, dL; LM_REAL tau, eps1, eps2, eps2_sq, eps3; LM_REAL init_p_eL2; int nu=2, nu2, stop, nfev, njev=0; const int nm=n*m; /* variables for constrained LM */ struct FUNC_STATE fstate; LM_REAL alpha=CNST(1e-4), beta=CNST(0.9), gamma=CNST(0.99995), gamma_sq=gamma*gamma, rho=CNST(1e-8); LM_REAL t, t0; LM_REAL steptl=CNST(1e3)*(LM_REAL)sqrt(LM_REAL_EPSILON), jacTeDp; LM_REAL tmin=CNST(1e-12), tming=CNST(1e-18); /* minimum step length for LS and PG steps */ const LM_REAL tini=CNST(1.0); /* initial step length for LS and PG steps */ int nLMsteps=0, nLSsteps=0, nPGsteps=0, gprevtaken=0; int numactive; mu=jacTe_inf=t=0.0; tmin=tmin; /* -Wall */ if(n0; * if p[i]==lb[i] g[i]<0; otherwise g[i]=0 */ for(i=j=numactive=0, p_L2=jacTe_inf=0.0; i0.0) ++j; } else if(lb && p[i]==lb[i]){ ++numactive; if(jacTe[i]<0.0) ++j; } else if(jacTe_inf < (tmp=FABS(jacTe[i]))) jacTe_inf=tmp; diag_jacTjac[i]=jacTjac[i*m+i]; /* save diagonal entries so that augmentation can be later canceled */ p_L2+=p[i]*p[i]; } //p_L2=sqrt(p_L2); #if 0 if(!(k%100)){ printf("Current estimate: "); for(i=0; itmp) tmp=diag_jacTjac[i]; /* find max diagonal element */ mu=tau*tmp; } else mu=CNST(0.5)*tau*p_eL2; /* use Kanzow's starting mu */ } /* determine increment using a combination of adaptive damping, line search and projected gradient search */ while(1){ /* augment normal equations */ for(i=0; i=(p_L2+eps2)/(CNST(EPSILON)*CNST(EPSILON))){ /* almost singular */ stop=4; break; } (*func)(pDp, hx, m, n, adata); ++nfev; /* evaluate function at p + Dp */ for(i=0, pDp_eL2=0.0; i0.0){ dF=p_eL2-pDp_eL2; tmp=(CNST(2.0)*dF/dL-CNST(1.0)); tmp=CNST(1.0)-tmp*tmp*tmp; mu=mu*( (tmp>=CNST(ONE_THIRD))? tmp : CNST(ONE_THIRD) ); } else mu=(mu>=pDp_eL2)? pDp_eL2 : mu; /* pDp_eL2 is the new pDp_eL2 */ #else mu=(mu>=pDp_eL2)? pDp_eL2 : mu; /* pDp_eL2 is the new pDp_eL2 */ #endif nu=2; for(i=0 ; i=CNST(1.0))? tmp : CNST(1.0) ); #if 1 /* use Schnabel's backtracking line search; it requires fewer "func" evaluations */ LNSRCH(m, p, p_eL2, jacTe, Dp, alpha, pDp, &pDp_eL2, func, fstate, &mxtake, &iretcd, stepmx, steptl, NULL); /* NOTE: LNSRCH() updates hx */ if(iretcd!=0) goto gradproj; /* rather inelegant but effective way to handle LNSRCH() failures... */ #else /* use the simpler (but slower!) line search described by Kanzow */ for(t=tini; t>tmin; t*=beta){ for(i=0; itming; t*=beta){ for(i=0; i=itmax) stop=3; for(i=0; ifunc))(p, hx, m, n, dta->adata); } void LMBC_DIF_JACF(LM_REAL *p, LM_REAL *jac, int m, int n, void *data) { struct LMBC_DIF_DATA *dta=(struct LMBC_DIF_DATA *)data; /* evaluate user-supplied function at p */ (*(dta->func))(p, dta->hx, m, n, dta->adata); FDIF_FORW_JAC_APPROX(dta->func, p, dta->hx, dta->hxx, dta->delta, jac, m, n, dta->adata); } /* No jacobian version of the LEVMAR_BC_DER() function above: the jacobian is approximated with * the aid of finite differences (forward or central, see the comment for the opts argument) * Ideally, this function should be implemented with a secant approach. Currently, it just calls * LEVMAR_BC_DER() */ int LEVMAR_BC_DIF( void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in R^n */ LM_REAL *p, /* I/O: initial parameter estimates. On output has the estimated solution */ LM_REAL *x, /* I: measurement vector */ int m, /* I: parameter vector dimension (i.e. #unknowns) */ int n, /* I: measurement vector dimension */ LM_REAL *lb, /* I: vector of lower bounds. If NULL, no lower bounds apply */ LM_REAL *ub, /* I: vector of upper bounds. If NULL, no upper bounds apply */ int itmax, /* I: maximum number of iterations */ LM_REAL opts[5], /* I: opts[0-4] = minim. options [\mu, \epsilon1, \epsilon2, \epsilon3, \delta]. Respectively the * scale factor for initial \mu, stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2 and * the step used in difference approximation to the jacobian. Set to NULL for defaults to be used. * If \delta<0, the jacobian is approximated with central differences which are more accurate * (but slower!) compared to the forward differences employed by default. */ LM_REAL info[LM_INFO_SZ], /* O: information regarding the minimization. Set to NULL if don't care * info[0]= ||e||_2 at initial p. * info[1-4]=[ ||e||_2, ||J^T e||_inf, ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p. * info[5]= # iterations, * info[6]=reason for terminating: 1 - stopped by small gradient J^T e * 2 - stopped by small Dp * 3 - stopped by itmax * 4 - singular matrix. Restart from current p with increased mu * 5 - no further error reduction is possible. Restart with increased mu * 6 - stopped by small ||e||_2 * info[7]= # function evaluations * info[8]= # jacobian evaluations */ LM_REAL *work, /* working memory, allocate if NULL */ LM_REAL *covar, /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */ void *adata) /* pointer to possibly additional data, passed uninterpreted to func. * Set to NULL if not needed */ { struct LMBC_DIF_DATA data; int ret; //fprintf(stderr, RCAT("\nWarning: current implementation of ", LEVMAR_BC_DIF) "() does not use a secant approach!\n\n"); data.func=func; data.hx=(LM_REAL *)malloc(2*n*sizeof(LM_REAL)); /* allocate a big chunk in one step */ if(!data.hx){ fprintf(stderr, LCAT(LEVMAR_BC_DIF, "(): memory allocation request failed\n")); exit(1); } data.hxx=data.hx+n; data.adata=adata; data.delta=(opts)? FABS(opts[4]) : (LM_REAL)LM_DIFF_DELTA; // no central differences here... ret=LEVMAR_BC_DER(LMBC_DIF_FUNC, LMBC_DIF_JACF, p, x, m, n, lb, ub, itmax, opts, info, work, covar, (void *)&data); if(info) /* correct the number of function calls */ info[7]+=info[8]*(m+1); /* each jacobian evaluation costs m+1 function calls */ free(data.hx); return ret; } /* undefine everything. THIS MUST REMAIN AT THE END OF THE FILE */ #undef FUNC_STATE #undef LNSRCH #undef BOXPROJECT #undef BOXCHECK #undef LEVMAR_BC_DER #undef LMBC_DIF_DATA #undef LMBC_DIF_FUNC #undef LMBC_DIF_JACF #undef LEVMAR_BC_DIF #undef FDIF_FORW_JAC_APPROX #undef FDIF_CENT_JAC_APPROX #undef LEVMAR_COVAR #undef TRANS_MAT_MAT_MULT #undef AX_EQ_B_LU #undef AX_EQ_B_CHOL #undef AX_EQ_B_QR #undef AX_EQ_B_QRLS #undef AX_EQ_B_SVD