/* Amp.cc Copyright 2003-7 Tim Goetze David Yeh (Tone Stack in TS models) http://quitte.de/dsp/ Tube amplifier models */ /* This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA or point your web browser to http://www.gnu.org. */ #include "basics.h" #include #include "Amp.h" #include "Descriptor.h" void AmpStub::init (bool adjust_downsampler) { dc_blocker.set_f (10. / fs); /* going a bit lower than nominal with fc */ double f = .7 * M_PI / OVERSAMPLE; /* construct the upsampler filter kernel */ DSP::sinc (f, up.c, FIR_SIZE); DSP::kaiser (up.c, FIR_SIZE, 6.4); /* copy upsampler filter kernel for downsampler, make sum */ double s = 0; for (int i = 0; i < up.n; ++i) down.c[i] = up.c[i], s += up.c[i]; s = 1 / s; /* scale downsampler kernel for unity gain + correction for transfer */ double t = adjust_downsampler ? s / max (fabs (tube.clip[0].value), fabs (tube.clip[1].value)) : s; for (int i = 0; i < down.n; ++i) down.c[i] *= t; /* scale upsampler kernel for unity gain */ s *= OVERSAMPLE; for (int i = 0; i < up.n; ++i) up.c[i] *= s; } /* //////////////////////////////////////////////////////////////////////// */ void AmpIII::init() { this->AmpStub::init (false); /* need to filter out dc before the power amp stage, which is running at * the oversampled rate */ dc_blocker.set_f (10. / (fs * OVERSAMPLE)); DSP::RBJ::LoShelve (200 / fs, .2, -3, filter.a, filter.b); } template void AmpIII::one_cycle (int frames) { d_sample * s = ports[0]; d_sample gain = getport(1); d_sample temp = getport(2) * tube.scale; drive = getport(3) * .5; i_drive = 1 / (1 - drive); d_sample * d = ports[4]; *ports[5] = OVERSAMPLE; double g = current.g; current.g = max (gain < 1 ? gain : exp2 (gain - 1), .000001); current.g *= tube.scale / fabs (tube.transfer (temp)); /* recursive fade to prevent zipper noise from the 'gain' knob */ if (g == 0) g = current.g; double one_over_n = frames > 0 ? 1. / frames : 1; double gf = pow (current.g / g, one_over_n); for (int i = 0; i < frames; ++i) { register d_sample a = s[i]; a = g * tube.transfer (a * temp); a = filter.process (a + normal); a = tube.transfer_clip (up.upsample (a)); a = power_transfer (dc_blocker.process (a)); a = down.process (a); for (int o = 1; o < OVERSAMPLE; ++o) down.store ( power_transfer ( dc_blocker.process ( normal + tube.transfer_clip (up.pad (o))))); F (d, i, a, adding_gain); g *= gf; } current.g = g; } /* //////////////////////////////////////////////////////////////////////// */ PortInfo AmpIII::port_info [] = { { "in", INPUT | AUDIO, {BOUNDED, -1, 1} }, { "gain", INPUT | CONTROL, {BOUNDED | DEFAULT_1, 0, 10} }, { "temperature", INPUT | CONTROL, {BOUNDED | DEFAULT_MID, 0.005, 1} }, { "drive", INPUT | CONTROL, {BOUNDED | DEFAULT_MAX, 0.0001, 1} /* ^2 gives the nice drive */ }, { "out", OUTPUT | AUDIO, {0} }, { "latency", OUTPUT | CONTROL, {0} } }; template <> void Descriptor::setup() { UniqueID = 1786; Label = "AmpIII"; Properties = HARD_RT; Name = CAPS "AmpIII - Tube amp"; Maker = "Tim Goetze "; Copyright = "GPL, 2002-7"; /* fill port info and vtable */ autogen(); } /* //////////////////////////////////////////////////////////////////////// */ void AmpIV::init() { this->AmpStub::init (false); /* need to filter out dc before the power amp stage, which is running at * the oversampled rate */ dc_blocker.set_f (10. / (fs * OVERSAMPLE)); tone.init (fs); } template void AmpIV::one_cycle (int frames) { double one_over_n = frames > 0 ? 1. / frames : 1; d_sample * s = ports[0]; d_sample gain = getport(1); d_sample temp = getport(2) * tube.scale; tone.start_cycle (ports + 3, one_over_n); drive = getport(7) * .5; i_drive = 1 / (1 - drive); d_sample * d = ports[8]; *ports[9] = OVERSAMPLE; double g = current.g; current.g = max (gain < 1 ? gain : exp2 (gain - 1), .000001); current.g *= tube.scale / fabs (tube.transfer (temp)); /* recursive fade to prevent zipper noise from the 'gain' knob */ if (g == 0) g = current.g; double gf = pow (current.g / g, one_over_n); for (int i = 0; i < frames; ++i) { register d_sample a = s[i] + normal; a = g * tube.transfer (a * temp); a = tone.process (a); a = tube.transfer_clip (up.upsample (a)); a = power_transfer (dc_blocker.process (a)); a = down.process (a); for (int o = 1; o < OVERSAMPLE; ++o) down.store ( power_transfer ( dc_blocker.process ( normal + tube.transfer_clip (up.pad (o))))); F (d, i, a, adding_gain); g *= gf; } current.g = g; } /* //////////////////////////////////////////////////////////////////////// */ PortInfo AmpIV::port_info [] = { { "in", INPUT | AUDIO, {BOUNDED, -1, 1} }, { "gain", INPUT | CONTROL, {BOUNDED | DEFAULT_1, 0, 10} }, { "temperature", INPUT | CONTROL, {BOUNDED | DEFAULT_MID, 0.005, 1} }, { "bass", INPUT | CONTROL, {BOUNDED | DEFAULT_0, -20, 20} }, { "mid", INPUT | CONTROL, {BOUNDED | DEFAULT_0, -20, 20} }, { "treble", INPUT | CONTROL, {BOUNDED | DEFAULT_0, -20, 20} }, { "hi", INPUT | CONTROL, {BOUNDED | DEFAULT_0, -20, 20} }, { "drive", INPUT | CONTROL, {BOUNDED | DEFAULT_MAX, 0.0001, 1} /* ^2 gives the nice drive */ }, { "out", OUTPUT | AUDIO, {0} }, { "latency", OUTPUT | CONTROL, {0} } }; template <> void Descriptor::setup() { UniqueID = 1794; Label = "AmpIV"; Properties = HARD_RT; Name = CAPS "AmpIV - Tube amp + tone controls"; Maker = "Tim Goetze "; Copyright = "GPL, 2002-7"; /* fill port info and vtable */ autogen(); } /* //////////////////////////////////////////////////////////////////////// */ void AmpV::init() { this->AmpStub::init (false); /* need to filter out dc before the power amp stage, which is running at * the oversampled rate */ dc_blocker.set_f (10. / (fs * OVERSAMPLE)); DSP::RBJ::LoShelve (210. / fs, .2, -1, filter[0].a, filter[0].b); DSP::RBJ::LoShelve (4200. / fs, 1.2, +6, filter[1].a, filter[1].b); DSP::RBJ::LoShelve (420. / fs, .2, +2, filter[2].a, filter[2].b); /* power supply cap */ for (int i = 0; i < 2; ++i) DSP::RBJ::LP (10. / fs, .3, power_cap[i].a, power_cap[i].b); } template void AmpV::one_cycle (int frames) { d_sample * s = ports[0]; d_sample gain = getport(1); if (*ports[2] != cut) { cut = getport(2); DSP::RBJ::LoShelve (210. / fs, .2, cut, filter[0].a, filter[0].b); } if (*ports[3] != tone) { tone = getport(3); double f = tone * tone * 8400 + 420; double q = tone * .4 + .2; double db = tone * 2 + 2; DSP::RBJ::LoShelve (f / fs, q, db, filter[2].a, filter[2].b); } drive = getport(4) * .5; i_drive = 1 / (1 - drive); #define MAX_WATTS port_info[5].range.UpperBound d_sample sag = (MAX_WATTS - getport(5)) / MAX_WATTS; sag = .6 * sag * sag; d_sample * d = ports[6]; *ports[7] = OVERSAMPLE; double g = current.g; current.g = max (gain < 1 ? gain : pow (20, gain - 1), .000001); #if 0 if (++_turn & 127) == 0) fprintf (stderr, "supply = %.3f sag = %.3f\n", supply, sag); #endif if (g == 0) g = current.g; /* recursive fade to prevent zipper noise from the 'gain' knob */ double one_over_n = frames > 0 ? 1. / frames : 1; double gf = pow (current.g / g, one_over_n); for (int i = 0; i < frames; ++i) { register d_sample a = s[i]; register d_sample v = 3 - supply; /* alternative curve: v = v * v * .1 + .1; */ v = v * v * .06 + .46; a = filter[0].process (a + normal); if (0) a = filter[2].process (a); a = g * (a + supply * .001); a = v * tube.transfer_clip (up.upsample (a)); a = power_transfer (dc_blocker.process (a)); a = down.process (a); a = filter[1].process (a - normal); if (1) a = filter[2].process (a + normal); { for (int o = 1; o < OVERSAMPLE; ++o) down.store ( power_transfer ( dc_blocker.process ( normal + tube.transfer_clip ( up.pad (o))))); } F (d, i, a, adding_gain); /* integrate for an approximation of cumulative output power */ supply += sag * fabs (a) + normal; /* filter integrated power consumption */ for (int j = 0; j < 2; ++j) supply = 0.9 * (power_cap[j].process (supply)); g *= gf; normal = -normal; } current.g = g; } /* //////////////////////////////////////////////////////////////////////// */ PortInfo AmpV::port_info [] = { { "in", INPUT | AUDIO, {BOUNDED, -1, 1} }, { "gain", INPUT | CONTROL, {BOUNDED | DEFAULT_1, 0, 3} }, { "bass", INPUT | CONTROL, {BOUNDED | DEFAULT_0, -9, 9} }, { "tone", INPUT | CONTROL, {BOUNDED | DEFAULT_MIN, 0, 1} }, { "drive", INPUT | CONTROL, {BOUNDED | DEFAULT_HIGH, 0.0001, 1} /* ^2 gives the nice drive */ }, { "watts", INPUT | CONTROL, {BOUNDED | DEFAULT_MID, 5, 150} }, { "out", OUTPUT | AUDIO, {0} }, { "latency", OUTPUT | CONTROL, {0} } }; template <> void Descriptor::setup() { UniqueID = 2587; Label = "AmpV"; Properties = HARD_RT; Name = CAPS "AmpV - Tube amp"; Maker = "Tim Goetze "; Copyright = "GPL, 2002-7"; /* fill port info and vtable */ autogen(); } /* //////////////////////////////////////////////////////////////////////// */ void AmpVTS::init() { this->AmpStub::init (false); /* need to filter out dc before the power amp stage, which is running at * the oversampled rate */ dc_blocker.set_f (10. / (fs * OVERSAMPLE)); /* power supply capacitance */ for (int i = 0; i < 2; ++i) DSP::RBJ::LP (10. / fs, .3, power_cap[i].a, power_cap[i].b); tonestack.init (fs); } template void AmpVTS::one_cycle (int frames) { d_sample * s = ports[0]; tonestack.start_cycle (ports + 1, 2); d_sample gain = getport(2); drive = getport(6) * .5; i_drive = 1 / (1 - drive); d_sample sag = 1 - max (0.0001, min (1, getport(7))); sag = .6 * sag * sag; /* map to log space makes slider better */ d_sample * d = ports[8]; *ports[9] = OVERSAMPLE; double g = current.g; if (gain < 1) current.g = max (gain, .001); else { gain -= 1; gain *= gain; current.g = pow (10, gain); } /* recursive fade to prevent zipper noise from the 'gain' knob */ double one_over_n = frames > 0 ? 1. / frames : 1; double gf = pow (current.g / g, one_over_n); for (int i = 0; i < frames; ++i) { register double a = s[i]; register double v = 3 - supply; v = v * v * .06 + .46; a = tube.transfer (a); a = tonestack.process (a + normal); a = g * (a + supply * .001); a = v * tube.transfer_clip (up.upsample (a)); a = power_transfer (dc_blocker.process (a)); a = down.process (a); { for (int o = 1; o < OVERSAMPLE; ++o) down.store ( power_transfer ( dc_blocker.process ( normal + tube.transfer_clip ( up.pad (o))))); } F (d, i, a, adding_gain); /* integrate for an approximation of cumulative output power */ supply += sag * fabs (a) + normal; /* filter integrated power consumption */ for (int j = 0; j < 2; ++j) supply = 0.9 * (power_cap[j].process (supply + normal)); g *= gf; normal = -normal; } current.g = g; } /* //////////////////////////////////////////////////////////////////////// */ PortInfo AmpVTS::port_info [] = { { "in", INPUT | AUDIO, {BOUNDED, -1, 1} }, { "model", INPUT | CONTROL, {BOUNDED | DEFAULT_0 | INTEGER, 0, 5} /* no way to set dyn at compile t */ }, { "gain", INPUT | CONTROL, {BOUNDED | DEFAULT_HIGH, 0, 3} }, { "bass", INPUT | CONTROL, {BOUNDED | DEFAULT_MID, 0, 1} }, { "mid", INPUT | CONTROL, {BOUNDED | DEFAULT_1, 0, 1} }, { "treble", INPUT | CONTROL, {BOUNDED | DEFAULT_HIGH, 0, 1} }, { "drive", INPUT | CONTROL, {BOUNDED | DEFAULT_LOW, 0.0001, 1} }, { "watts", INPUT | CONTROL, {BOUNDED | DEFAULT_HIGH, 0.0001, 1} }, { "out", OUTPUT | AUDIO, {0} }, { "latency", OUTPUT | CONTROL, {0} } }; template <> void Descriptor::setup() { UniqueID = 2592; Label = "AmpVTS"; Properties = HARD_RT; Name = CAPS "AmpVTS - Tube amp + Tone stack"; Maker = "David Yeh & Tim Goetze "; Copyright = "GPL, 2002-7"; /* fill port info and vtable */ autogen(); }