/* ZynAddSubFX - a software synthesizer PADnoteParameters.cpp - Parameters for PADnote (PADsynth) Copyright (C) 2002-2005 Nasca Octavian Paul Author: Nasca Octavian Paul This program is free software; you can redistribute it and/or modify it under the terms of version 2 of the GNU General Public License as published by the Free Software Foundation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License (version 2 or later) for more details. You should have received a copy of the GNU General Public License (version 2) along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include "PADnoteParameters.h" #include "../Output/WAVaudiooutput.h" using namespace std; PADnoteParameters::PADnoteParameters(FFTwrapper *fft_, pthread_mutex_t *mutex_):Presets() { setpresettype("Ppadsyth"); fft = fft_; mutex = mutex_; resonance = new Resonance(); oscilgen = new OscilGen(fft_, resonance); oscilgen->ADvsPAD = true; FreqEnvelope = new EnvelopeParams(0, 0); FreqEnvelope->ASRinit(64, 50, 64, 60); FreqLfo = new LFOParams(70, 0, 64, 0, 0, 0, 0, 0); AmpEnvelope = new EnvelopeParams(64, 1); AmpEnvelope->ADSRinit_dB(0, 40, 127, 25); AmpLfo = new LFOParams(80, 0, 64, 0, 0, 0, 0, 1); GlobalFilter = new FilterParams(2, 94, 40); FilterEnvelope = new EnvelopeParams(0, 1); FilterEnvelope->ADSRinit_filter(64, 40, 64, 70, 60, 64); FilterLfo = new LFOParams(80, 0, 64, 0, 0, 0, 0, 2); for(int i = 0; i < PAD_MAX_SAMPLES; i++) sample[i].smp = NULL; newsample.smp = NULL; defaults(); } PADnoteParameters::~PADnoteParameters() { deletesamples(); delete (oscilgen); delete (resonance); delete (FreqEnvelope); delete (FreqLfo); delete (AmpEnvelope); delete (AmpLfo); delete (GlobalFilter); delete (FilterEnvelope); delete (FilterLfo); } void PADnoteParameters::defaults() { Pmode = 0; Php.base.type = 0; Php.base.par1 = 80; Php.freqmult = 0; Php.modulator.par1 = 0; Php.modulator.freq = 30; Php.width = 127; Php.amp.type = 0; Php.amp.mode = 0; Php.amp.par1 = 80; Php.amp.par2 = 64; Php.autoscale = true; Php.onehalf = 0; setPbandwidth(500); Pbwscale = 0; resonance->defaults(); oscilgen->defaults(); Phrpos.type = 0; Phrpos.par1 = 64; Phrpos.par2 = 64; Phrpos.par3 = 0; Pquality.samplesize = 3; Pquality.basenote = 4; Pquality.oct = 3; Pquality.smpoct = 2; PStereo = 1; //stereo /* Frequency Global Parameters */ Pfixedfreq = 0; PfixedfreqET = 0; PDetune = 8192; //zero PCoarseDetune = 0; PDetuneType = 1; FreqEnvelope->defaults(); FreqLfo->defaults(); /* Amplitude Global Parameters */ PVolume = 90; PPanning = 64; //center PAmpVelocityScaleFunction = 64; AmpEnvelope->defaults(); AmpLfo->defaults(); PPunchStrength = 0; PPunchTime = 60; PPunchStretch = 64; PPunchVelocitySensing = 72; /* Filter Global Parameters*/ PFilterVelocityScale = 64; PFilterVelocityScaleFunction = 64; GlobalFilter->defaults(); FilterEnvelope->defaults(); FilterLfo->defaults(); deletesamples(); } void PADnoteParameters::deletesample(int n) { if((n < 0) || (n >= PAD_MAX_SAMPLES)) return; if(sample[n].smp != NULL) { delete[] sample[n].smp; sample[n].smp = NULL; } sample[n].size = 0; sample[n].basefreq = 440.0; } void PADnoteParameters::deletesamples() { for(int i = 0; i < PAD_MAX_SAMPLES; i++) deletesample(i); } /* * Get the harmonic profile (i.e. the frequency distributio of a single harmonic) */ REALTYPE PADnoteParameters::getprofile(REALTYPE *smp, int size) { for(int i = 0; i < size; i++) smp[i] = 0.0; const int supersample = 16; REALTYPE basepar = pow(2.0, (1.0 - Php.base.par1 / 127.0) * 12.0); REALTYPE freqmult = floor(pow(2.0, Php.freqmult / 127.0 * 5.0) + 0.000001); REALTYPE modfreq = floor(pow(2.0, Php.modulator.freq / 127.0 * 5.0) + 0.000001); REALTYPE modpar1 = pow(Php.modulator.par1 / 127.0, 4.0) * 5.0 / sqrt( modfreq); REALTYPE amppar1 = pow(2.0, pow(Php.amp.par1 / 127.0, 2.0) * 10.0) - 0.999; REALTYPE amppar2 = (1.0 - Php.amp.par2 / 127.0) * 0.998 + 0.001; REALTYPE width = pow(150.0 / (Php.width + 22.0), 2.0); for(int i = 0; i < size * supersample; i++) { bool makezero = false; REALTYPE x = i * 1.0 / (size * (REALTYPE) supersample); REALTYPE origx = x; //do the sizing (width) x = (x - 0.5) * width + 0.5; if(x < 0.0) { x = 0.0; makezero = true; } else { if(x > 1.0) { x = 1.0; makezero = true; } } //compute the full profile or one half switch(Php.onehalf) { case 1: x = x * 0.5 + 0.5; break; case 2: x = x * 0.5; break; } REALTYPE x_before_freq_mult = x; //do the frequency multiplier x *= freqmult; //do the modulation of the profile x += sin(x_before_freq_mult * 3.1415926 * modfreq) * modpar1; x = fmod(x + 1000.0, 1.0) * 2.0 - 1.0; //this is the base function of the profile REALTYPE f; switch(Php.base.type) { case 1: f = exp(-(x * x) * basepar); if(f < 0.4) f = 0.0; else f = 1.0; break; case 2: f = exp(-(fabs(x)) * sqrt(basepar)); break; default: f = exp(-(x * x) * basepar); break; } if(makezero) f = 0.0; REALTYPE amp = 1.0; origx = origx * 2.0 - 1.0; //compute the amplitude multiplier switch(Php.amp.type) { case 1: amp = exp(-(origx * origx) * 10.0 * amppar1); break; case 2: amp = 0.5 * (1.0 + cos(3.1415926 * origx * sqrt(amppar1 * 4.0 + 1.0))); break; case 3: amp = 1.0 / (pow(origx * (amppar1 * 2.0 + 0.8), 14.0) + 1.0); break; } //apply the amplitude multiplier REALTYPE finalsmp = f; if(Php.amp.type != 0) switch(Php.amp.mode) { case 0: finalsmp = amp * (1.0 - amppar2) + finalsmp * amppar2; break; case 1: finalsmp *= amp * (1.0 - amppar2) + amppar2; break; case 2: finalsmp = finalsmp / (amp + pow(amppar2, 4.0) * 20.0 + 0.0001); break; case 3: finalsmp = amp / (finalsmp + pow(amppar2, 4.0) * 20.0 + 0.0001); break; } ; smp[i / supersample] += finalsmp / supersample; } //normalize the profile (make the max. to be equal to 1.0) REALTYPE max = 0.0; for(int i = 0; i < size; i++) { if(smp[i] < 0.0) smp[i] = 0.0; if(smp[i] > max) max = smp[i]; } if(max < 0.00001) max = 1.0; for(int i = 0; i < size; i++) smp[i] /= max; if(!Php.autoscale) return 0.5; //compute the estimated perceived bandwidth REALTYPE sum = 0.0; int i; for(i = 0; i < size / 2 - 2; i++) { sum += smp[i] * smp[i] + smp[size - i - 1] * smp[size - i - 1]; if(sum >= 4.0) break; } REALTYPE result = 1.0 - 2.0 * i / (REALTYPE) size; return result; } /* * Compute the real bandwidth in cents and returns it * Also, sets the bandwidth parameter */ REALTYPE PADnoteParameters::setPbandwidth(int Pbandwidth) { this->Pbandwidth = Pbandwidth; REALTYPE result = pow(Pbandwidth / 1000.0, 1.1); result = pow(10.0, result * 4.0) * 0.25; return result; } /* * Get the harmonic(overtone) position */ REALTYPE PADnoteParameters::getNhr(int n) { REALTYPE result = 1.0; REALTYPE par1 = pow(10.0, -(1.0 - Phrpos.par1 / 255.0) * 3.0); REALTYPE par2 = Phrpos.par2 / 255.0; REALTYPE n0 = n - 1.0; REALTYPE tmp = 0.0; int thresh = 0; switch(Phrpos.type) { case 1: thresh = (int)(par2 * par2 * 100.0) + 1; if(n < thresh) result = n; else result = 1.0 + n0 + (n0 - thresh + 1.0) * par1 * 8.0; break; case 2: thresh = (int)(par2 * par2 * 100.0) + 1; if(n < thresh) result = n; else result = 1.0 + n0 - (n0 - thresh + 1.0) * par1 * 0.90; break; case 3: tmp = par1 * 100.0 + 1.0; result = pow(n0 / tmp, 1.0 - par2 * 0.8) * tmp + 1.0; break; case 4: result = n0 * (1.0 - par1) + pow(n0 * 0.1, par2 * 3.0 + 1.0) * par1 * 10.0 + 1.0; break; case 5: result = n0 + sin(n0 * par2 * par2 * PI * 0.999) * sqrt(par1) * 2.0 + 1.0; break; case 6: tmp = pow(par2 * 2.0, 2.0) + 0.1; result = n0 * pow(1.0 + par1 * pow(n0 * 0.8, tmp), tmp) + 1.0; break; default: result = n; break; } REALTYPE par3 = Phrpos.par3 / 255.0; REALTYPE iresult = floor(result + 0.5); REALTYPE dresult = result - iresult; result = iresult + (1.0 - par3) * dresult; return result; } /* * Generates the long spectrum for Bandwidth mode (only amplitudes are generated; phases will be random) */ void PADnoteParameters::generatespectrum_bandwidthMode(REALTYPE *spectrum, int size, REALTYPE basefreq, REALTYPE *profile, int profilesize, REALTYPE bwadjust) { for(int i = 0; i < size; i++) spectrum[i] = 0.0; REALTYPE harmonics[OSCIL_SIZE / 2]; for(int i = 0; i < OSCIL_SIZE / 2; i++) harmonics[i] = 0.0; //get the harmonic structure from the oscillator (I am using the frequency amplitudes, only) oscilgen->get(harmonics, basefreq, false); //normalize REALTYPE max = 0.0; for(int i = 0; i < OSCIL_SIZE / 2; i++) if(harmonics[i] > max) max = harmonics[i]; if(max < 0.000001) max = 1; for(int i = 0; i < OSCIL_SIZE / 2; i++) harmonics[i] /= max; for(int nh = 1; nh < OSCIL_SIZE / 2; nh++) { //for each harmonic REALTYPE realfreq = getNhr(nh) * basefreq; if(realfreq > SAMPLE_RATE * 0.49999) break; if(realfreq < 20.0) break; if(harmonics[nh - 1] < 1e-4) continue; //compute the bandwidth of each harmonic REALTYPE bandwidthcents = setPbandwidth(Pbandwidth); REALTYPE bw = (pow(2.0, bandwidthcents / 1200.0) - 1.0) * basefreq / bwadjust; REALTYPE power = 1.0; switch(Pbwscale) { case 0: power = 1.0; break; case 1: power = 0.0; break; case 2: power = 0.25; break; case 3: power = 0.5; break; case 4: power = 0.75; break; case 5: power = 1.5; break; case 6: power = 2.0; break; case 7: power = -0.5; break; } bw = bw * pow(realfreq / basefreq, power); int ibw = (int)((bw / (SAMPLE_RATE * 0.5) * size)) + 1; REALTYPE amp = harmonics[nh - 1]; if(resonance->Penabled) amp *= resonance->getfreqresponse(realfreq); if(ibw > profilesize) { //if the bandwidth is larger than the profilesize REALTYPE rap = sqrt((REALTYPE)profilesize / (REALTYPE)ibw); int cfreq = (int) (realfreq / (SAMPLE_RATE * 0.5) * size) - ibw / 2; for(int i = 0; i < ibw; i++) { int src = (int)(i * rap * rap); int spfreq = i + cfreq; if(spfreq < 0) continue; if(spfreq >= size) break; spectrum[spfreq] += amp * profile[src] * rap; } } else { //if the bandwidth is smaller than the profilesize REALTYPE rap = sqrt((REALTYPE)ibw / (REALTYPE)profilesize); REALTYPE ibasefreq = realfreq / (SAMPLE_RATE * 0.5) * size; for(int i = 0; i < profilesize; i++) { REALTYPE idfreq = i / (REALTYPE)profilesize - 0.5; idfreq *= ibw; int spfreq = (int) (idfreq + ibasefreq); REALTYPE fspfreq = fmod(idfreq + ibasefreq, 1.0); if(spfreq <= 0) continue; if(spfreq >= size - 1) break; spectrum[spfreq] += amp * profile[i] * rap * (1.0 - fspfreq); spectrum[spfreq + 1] += amp * profile[i] * rap * fspfreq; } } } } /* * Generates the long spectrum for non-Bandwidth modes (only amplitudes are generated; phases will be random) */ void PADnoteParameters::generatespectrum_otherModes(REALTYPE *spectrum, int size, REALTYPE basefreq, REALTYPE *profile, int profilesize, REALTYPE bwadjust) { for(int i = 0; i < size; i++) spectrum[i] = 0.0; REALTYPE harmonics[OSCIL_SIZE / 2]; for(int i = 0; i < OSCIL_SIZE / 2; i++) harmonics[i] = 0.0; //get the harmonic structure from the oscillator (I am using the frequency amplitudes, only) oscilgen->get(harmonics, basefreq, false); //normalize REALTYPE max = 0.0; for(int i = 0; i < OSCIL_SIZE / 2; i++) if(harmonics[i] > max) max = harmonics[i]; if(max < 0.000001) max = 1; for(int i = 0; i < OSCIL_SIZE / 2; i++) harmonics[i] /= max; for(int nh = 1; nh < OSCIL_SIZE / 2; nh++) { //for each harmonic REALTYPE realfreq = getNhr(nh) * basefreq; ///sa fac aici interpolarea si sa am grija daca frecv descresc if(realfreq > SAMPLE_RATE * 0.49999) break; if(realfreq < 20.0) break; // if (harmonics[nh-1]<1e-4) continue; REALTYPE amp = harmonics[nh - 1]; if(resonance->Penabled) amp *= resonance->getfreqresponse(realfreq); int cfreq = (int) (realfreq / (SAMPLE_RATE * 0.5) * size); spectrum[cfreq] = amp + 1e-9; } if(Pmode != 1) { int old = 0; for(int k = 1; k < size; k++) { if((spectrum[k] > 1e-10) || (k == (size - 1))) { int delta = k - old; REALTYPE val1 = spectrum[old]; REALTYPE val2 = spectrum[k]; REALTYPE idelta = 1.0 / delta; for(int i = 0; i < delta; i++) { REALTYPE x = idelta * i; spectrum[old + i] = val1 * (1.0 - x) + val2 * x; } old = k; } } } } /* * Applies the parameters (i.e. computes all the samples, based on parameters); */ void PADnoteParameters::applyparameters(bool lockmutex) { const int samplesize = (((int) 1) << (Pquality.samplesize + 14)); int spectrumsize = samplesize / 2; REALTYPE spectrum[spectrumsize]; int profilesize = 512; REALTYPE profile[profilesize]; REALTYPE bwadjust = getprofile(profile, profilesize); // for (int i=0;ifreqs2smps(fftfreqs, newsample.smp); //that's all; here is the only ifft for the whole sample; no windows are used ;-) //normalize(rms) REALTYPE rms = 0.0; for(int i = 0; i < samplesize; i++) rms += newsample.smp[i] * newsample.smp[i]; rms = sqrt(rms); if(rms < 0.000001) rms = 1.0; rms *= sqrt(262144.0 / samplesize); for(int i = 0; i < samplesize; i++) newsample.smp[i] *= 1.0 / rms * 50.0; //prepare extra samples used by the linear or cubic interpolation for(int i = 0; i < extra_samples; i++) newsample.smp[i + samplesize] = newsample.smp[i]; //replace the current sample with the new computed sample if(lockmutex) { pthread_mutex_lock(mutex); deletesample(nsample); sample[nsample].smp = newsample.smp; sample[nsample].size = samplesize; sample[nsample].basefreq = basefreq * basefreqadjust; pthread_mutex_unlock(mutex); } else { deletesample(nsample); sample[nsample].smp = newsample.smp; sample[nsample].size = samplesize; sample[nsample].basefreq = basefreq * basefreqadjust; } newsample.smp = NULL; } delete (fft); deleteFFTFREQS(&fftfreqs); //delete the additional samples that might exists and are not useful if(lockmutex) { pthread_mutex_lock(mutex); for(int i = samplemax; i < PAD_MAX_SAMPLES; i++) deletesample(i); pthread_mutex_unlock(mutex); } else for(int i = samplemax; i < PAD_MAX_SAMPLES; i++) deletesample(i); ; } void PADnoteParameters::export2wav(string basefilename) { applyparameters(true); basefilename += "_PADsynth_"; for(int k = 0; k < PAD_MAX_SAMPLES; k++) { if(sample[k].smp == NULL) continue; char tmpstr[20]; snprintf(tmpstr, 20, "_%02d", k + 1); string filename = basefilename + string(tmpstr) + ".wav"; WAVaudiooutput wav; if(wav.newfile(filename, SAMPLE_RATE, 1)) { int nsmps = sample[k].size; short int *smps = new short int[nsmps]; for(int i = 0; i < nsmps; i++) smps[i] = (short int)(sample[k].smp[i] * 32767.0); wav.write_mono_samples(nsmps, smps); wav.close(); } } } void PADnoteParameters::add2XML(XMLwrapper *xml) { xml->setPadSynth(true); xml->addparbool("stereo", PStereo); xml->addpar("mode", Pmode); xml->addpar("bandwidth", Pbandwidth); xml->addpar("bandwidth_scale", Pbwscale); xml->beginbranch("HARMONIC_PROFILE"); xml->addpar("base_type", Php.base.type); xml->addpar("base_par1", Php.base.par1); xml->addpar("frequency_multiplier", Php.freqmult); xml->addpar("modulator_par1", Php.modulator.par1); xml->addpar("modulator_frequency", Php.modulator.freq); xml->addpar("width", Php.width); xml->addpar("amplitude_multiplier_type", Php.amp.type); xml->addpar("amplitude_multiplier_mode", Php.amp.mode); xml->addpar("amplitude_multiplier_par1", Php.amp.par1); xml->addpar("amplitude_multiplier_par2", Php.amp.par2); xml->addparbool("autoscale", Php.autoscale); xml->addpar("one_half", Php.onehalf); xml->endbranch(); xml->beginbranch("OSCIL"); oscilgen->add2XML(xml); xml->endbranch(); xml->beginbranch("RESONANCE"); resonance->add2XML(xml); xml->endbranch(); xml->beginbranch("HARMONIC_POSITION"); xml->addpar("type", Phrpos.type); xml->addpar("parameter1", Phrpos.par1); xml->addpar("parameter2", Phrpos.par2); xml->addpar("parameter3", Phrpos.par3); xml->endbranch(); xml->beginbranch("SAMPLE_QUALITY"); xml->addpar("samplesize", Pquality.samplesize); xml->addpar("basenote", Pquality.basenote); xml->addpar("octaves", Pquality.oct); xml->addpar("samples_per_octave", Pquality.smpoct); xml->endbranch(); xml->beginbranch("AMPLITUDE_PARAMETERS"); xml->addpar("volume", PVolume); xml->addpar("panning", PPanning); xml->addpar("velocity_sensing", PAmpVelocityScaleFunction); xml->addpar("punch_strength", PPunchStrength); xml->addpar("punch_time", PPunchTime); xml->addpar("punch_stretch", PPunchStretch); xml->addpar("punch_velocity_sensing", PPunchVelocitySensing); xml->beginbranch("AMPLITUDE_ENVELOPE"); AmpEnvelope->add2XML(xml); xml->endbranch(); xml->beginbranch("AMPLITUDE_LFO"); AmpLfo->add2XML(xml); xml->endbranch(); xml->endbranch(); xml->beginbranch("FREQUENCY_PARAMETERS"); xml->addpar("fixed_freq", Pfixedfreq); xml->addpar("fixed_freq_et", PfixedfreqET); xml->addpar("detune", PDetune); xml->addpar("coarse_detune", PCoarseDetune); xml->addpar("detune_type", PDetuneType); xml->beginbranch("FREQUENCY_ENVELOPE"); FreqEnvelope->add2XML(xml); xml->endbranch(); xml->beginbranch("FREQUENCY_LFO"); FreqLfo->add2XML(xml); xml->endbranch(); xml->endbranch(); xml->beginbranch("FILTER_PARAMETERS"); xml->addpar("velocity_sensing_amplitude", PFilterVelocityScale); xml->addpar("velocity_sensing", PFilterVelocityScaleFunction); xml->beginbranch("FILTER"); GlobalFilter->add2XML(xml); xml->endbranch(); xml->beginbranch("FILTER_ENVELOPE"); FilterEnvelope->add2XML(xml); xml->endbranch(); xml->beginbranch("FILTER_LFO"); FilterLfo->add2XML(xml); xml->endbranch(); xml->endbranch(); } void PADnoteParameters::getfromXML(XMLwrapper *xml) { PStereo = xml->getparbool("stereo", PStereo); Pmode = xml->getpar127("mode", 0); Pbandwidth = xml->getpar("bandwidth", Pbandwidth, 0, 1000); Pbwscale = xml->getpar127("bandwidth_scale", Pbwscale); if(xml->enterbranch("HARMONIC_PROFILE")) { Php.base.type = xml->getpar127("base_type", Php.base.type); Php.base.par1 = xml->getpar127("base_par1", Php.base.par1); Php.freqmult = xml->getpar127("frequency_multiplier", Php.freqmult); Php.modulator.par1 = xml->getpar127("modulator_par1", Php.modulator.par1); Php.modulator.freq = xml->getpar127("modulator_frequency", Php.modulator.freq); Php.width = xml->getpar127("width", Php.width); Php.amp.type = xml->getpar127("amplitude_multiplier_type", Php.amp.type); Php.amp.mode = xml->getpar127("amplitude_multiplier_mode", Php.amp.mode); Php.amp.par1 = xml->getpar127("amplitude_multiplier_par1", Php.amp.par1); Php.amp.par2 = xml->getpar127("amplitude_multiplier_par2", Php.amp.par2); Php.autoscale = xml->getparbool("autoscale", Php.autoscale); Php.onehalf = xml->getpar127("one_half", Php.onehalf); xml->exitbranch(); } if(xml->enterbranch("OSCIL")) { oscilgen->getfromXML(xml); xml->exitbranch(); } if(xml->enterbranch("RESONANCE")) { resonance->getfromXML(xml); xml->exitbranch(); } if(xml->enterbranch("HARMONIC_POSITION")) { Phrpos.type = xml->getpar127("type", Phrpos.type); Phrpos.par1 = xml->getpar("parameter1", Phrpos.par1, 0, 255); Phrpos.par2 = xml->getpar("parameter2", Phrpos.par2, 0, 255); Phrpos.par3 = xml->getpar("parameter3", Phrpos.par3, 0, 255); xml->exitbranch(); } if(xml->enterbranch("SAMPLE_QUALITY")) { Pquality.samplesize = xml->getpar127("samplesize", Pquality.samplesize); Pquality.basenote = xml->getpar127("basenote", Pquality.basenote); Pquality.oct = xml->getpar127("octaves", Pquality.oct); Pquality.smpoct = xml->getpar127("samples_per_octave", Pquality.smpoct); xml->exitbranch(); } if(xml->enterbranch("AMPLITUDE_PARAMETERS")) { PVolume = xml->getpar127("volume", PVolume); PPanning = xml->getpar127("panning", PPanning); PAmpVelocityScaleFunction = xml->getpar127("velocity_sensing", PAmpVelocityScaleFunction); PPunchStrength = xml->getpar127("punch_strength", PPunchStrength); PPunchTime = xml->getpar127("punch_time", PPunchTime); PPunchStretch = xml->getpar127("punch_stretch", PPunchStretch); PPunchVelocitySensing = xml->getpar127("punch_velocity_sensing", PPunchVelocitySensing); xml->enterbranch("AMPLITUDE_ENVELOPE"); AmpEnvelope->getfromXML(xml); xml->exitbranch(); xml->enterbranch("AMPLITUDE_LFO"); AmpLfo->getfromXML(xml); xml->exitbranch(); xml->exitbranch(); } if(xml->enterbranch("FREQUENCY_PARAMETERS")) { Pfixedfreq = xml->getpar127("fixed_freq", Pfixedfreq); PfixedfreqET = xml->getpar127("fixed_freq_et", PfixedfreqET); PDetune = xml->getpar("detune", PDetune, 0, 16383); PCoarseDetune = xml->getpar("coarse_detune", PCoarseDetune, 0, 16383); PDetuneType = xml->getpar127("detune_type", PDetuneType); xml->enterbranch("FREQUENCY_ENVELOPE"); FreqEnvelope->getfromXML(xml); xml->exitbranch(); xml->enterbranch("FREQUENCY_LFO"); FreqLfo->getfromXML(xml); xml->exitbranch(); xml->exitbranch(); } if(xml->enterbranch("FILTER_PARAMETERS")) { PFilterVelocityScale = xml->getpar127("velocity_sensing_amplitude", PFilterVelocityScale); PFilterVelocityScaleFunction = xml->getpar127( "velocity_sensing", PFilterVelocityScaleFunction); xml->enterbranch("FILTER"); GlobalFilter->getfromXML(xml); xml->exitbranch(); xml->enterbranch("FILTER_ENVELOPE"); FilterEnvelope->getfromXML(xml); xml->exitbranch(); xml->enterbranch("FILTER_LFO"); FilterLfo->getfromXML(xml); xml->exitbranch(); xml->exitbranch(); } }