/* ** 2003 September 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used for creating, destroying, and populating ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior ** to version 2.8.7, all this code was combined into the vdbe.c source file. ** But that file was getting too big so this subroutines were split out. */ #include "sqliteInt.h" #include "vdbeInt.h" /* ** When debugging the code generator in a symbolic debugger, one can ** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed ** as they are added to the instruction stream. */ #ifdef SQLITE_DEBUG int sqlite3VdbeAddopTrace = 0; #endif /* ** Create a new virtual database engine. */ Vdbe *sqlite3VdbeCreate(sqlite3 *db){ Vdbe *p; p = sqlite3DbMallocZero(db, sizeof(Vdbe) ); if( p==0 ) return 0; p->db = db; if( db->pVdbe ){ db->pVdbe->pPrev = p; } p->pNext = db->pVdbe; p->pPrev = 0; db->pVdbe = p; p->magic = VDBE_MAGIC_INIT; return p; } /* ** Remember the SQL string for a prepared statement. */ void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){ assert( isPrepareV2==1 || isPrepareV2==0 ); if( p==0 ) return; #ifdef SQLITE_OMIT_TRACE if( !isPrepareV2 ) return; #endif assert( p->zSql==0 ); p->zSql = sqlite3DbStrNDup(p->db, z, n); p->isPrepareV2 = (u8)isPrepareV2; } /* ** Return the SQL associated with a prepared statement */ const char *sqlite3_sql(sqlite3_stmt *pStmt){ Vdbe *p = (Vdbe *)pStmt; return (p && p->isPrepareV2) ? p->zSql : 0; } /* ** Swap all content between two VDBE structures. */ void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ Vdbe tmp, *pTmp; char *zTmp; tmp = *pA; *pA = *pB; *pB = tmp; pTmp = pA->pNext; pA->pNext = pB->pNext; pB->pNext = pTmp; pTmp = pA->pPrev; pA->pPrev = pB->pPrev; pB->pPrev = pTmp; zTmp = pA->zSql; pA->zSql = pB->zSql; pB->zSql = zTmp; pB->isPrepareV2 = pA->isPrepareV2; } #ifdef SQLITE_DEBUG /* ** Turn tracing on or off */ void sqlite3VdbeTrace(Vdbe *p, FILE *trace){ p->trace = trace; } #endif /* ** Resize the Vdbe.aOp array so that it is at least one op larger than ** it was. ** ** If an out-of-memory error occurs while resizing the array, return ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain ** unchanged (this is so that any opcodes already allocated can be ** correctly deallocated along with the rest of the Vdbe). */ static int growOpArray(Vdbe *p){ VdbeOp *pNew; int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op))); pNew = sqlite3DbRealloc(p->db, p->aOp, nNew*sizeof(Op)); if( pNew ){ p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op); p->aOp = pNew; } return (pNew ? SQLITE_OK : SQLITE_NOMEM); } /* ** Add a new instruction to the list of instructions current in the ** VDBE. Return the address of the new instruction. ** ** Parameters: ** ** p Pointer to the VDBE ** ** op The opcode for this instruction ** ** p1, p2, p3 Operands ** ** Use the sqlite3VdbeResolveLabel() function to fix an address and ** the sqlite3VdbeChangeP4() function to change the value of the P4 ** operand. */ int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ int i; VdbeOp *pOp; i = p->nOp; assert( p->magic==VDBE_MAGIC_INIT ); assert( op>0 && op<0xff ); if( p->nOpAlloc<=i ){ if( growOpArray(p) ){ return 1; } } p->nOp++; pOp = &p->aOp[i]; pOp->opcode = (u8)op; pOp->p5 = 0; pOp->p1 = p1; pOp->p2 = p2; pOp->p3 = p3; pOp->p4.p = 0; pOp->p4type = P4_NOTUSED; p->expired = 0; #ifdef SQLITE_DEBUG pOp->zComment = 0; if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]); #endif #ifdef VDBE_PROFILE pOp->cycles = 0; pOp->cnt = 0; #endif return i; } int sqlite3VdbeAddOp0(Vdbe *p, int op){ return sqlite3VdbeAddOp3(p, op, 0, 0, 0); } int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ return sqlite3VdbeAddOp3(p, op, p1, 0, 0); } int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ return sqlite3VdbeAddOp3(p, op, p1, p2, 0); } /* ** Add an opcode that includes the p4 value as a pointer. */ int sqlite3VdbeAddOp4( Vdbe *p, /* Add the opcode to this VM */ int op, /* The new opcode */ int p1, /* The P1 operand */ int p2, /* The P2 operand */ int p3, /* The P3 operand */ const char *zP4, /* The P4 operand */ int p4type /* P4 operand type */ ){ int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); sqlite3VdbeChangeP4(p, addr, zP4, p4type); return addr; } /* ** Add an opcode that includes the p4 value as an integer. */ int sqlite3VdbeAddOp4Int( Vdbe *p, /* Add the opcode to this VM */ int op, /* The new opcode */ int p1, /* The P1 operand */ int p2, /* The P2 operand */ int p3, /* The P3 operand */ int p4 /* The P4 operand as an integer */ ){ int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32); return addr; } /* ** Create a new symbolic label for an instruction that has yet to be ** coded. The symbolic label is really just a negative number. The ** label can be used as the P2 value of an operation. Later, when ** the label is resolved to a specific address, the VDBE will scan ** through its operation list and change all values of P2 which match ** the label into the resolved address. ** ** The VDBE knows that a P2 value is a label because labels are ** always negative and P2 values are suppose to be non-negative. ** Hence, a negative P2 value is a label that has yet to be resolved. ** ** Zero is returned if a malloc() fails. */ int sqlite3VdbeMakeLabel(Vdbe *p){ int i; i = p->nLabel++; assert( p->magic==VDBE_MAGIC_INIT ); if( i>=p->nLabelAlloc ){ int n = p->nLabelAlloc*2 + 5; p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, n*sizeof(p->aLabel[0])); p->nLabelAlloc = sqlite3DbMallocSize(p->db, p->aLabel)/sizeof(p->aLabel[0]); } if( p->aLabel ){ p->aLabel[i] = -1; } return -1-i; } /* ** Resolve label "x" to be the address of the next instruction to ** be inserted. The parameter "x" must have been obtained from ** a prior call to sqlite3VdbeMakeLabel(). */ void sqlite3VdbeResolveLabel(Vdbe *p, int x){ int j = -1-x; assert( p->magic==VDBE_MAGIC_INIT ); assert( j>=0 && jnLabel ); if( p->aLabel ){ p->aLabel[j] = p->nOp; } } /* ** Mark the VDBE as one that can only be run one time. */ void sqlite3VdbeRunOnlyOnce(Vdbe *p){ p->runOnlyOnce = 1; } #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ /* ** The following type and function are used to iterate through all opcodes ** in a Vdbe main program and each of the sub-programs (triggers) it may ** invoke directly or indirectly. It should be used as follows: ** ** Op *pOp; ** VdbeOpIter sIter; ** ** memset(&sIter, 0, sizeof(sIter)); ** sIter.v = v; // v is of type Vdbe* ** while( (pOp = opIterNext(&sIter)) ){ ** // Do something with pOp ** } ** sqlite3DbFree(v->db, sIter.apSub); ** */ typedef struct VdbeOpIter VdbeOpIter; struct VdbeOpIter { Vdbe *v; /* Vdbe to iterate through the opcodes of */ SubProgram **apSub; /* Array of subprograms */ int nSub; /* Number of entries in apSub */ int iAddr; /* Address of next instruction to return */ int iSub; /* 0 = main program, 1 = first sub-program etc. */ }; static Op *opIterNext(VdbeOpIter *p){ Vdbe *v = p->v; Op *pRet = 0; Op *aOp; int nOp; if( p->iSub<=p->nSub ){ if( p->iSub==0 ){ aOp = v->aOp; nOp = v->nOp; }else{ aOp = p->apSub[p->iSub-1]->aOp; nOp = p->apSub[p->iSub-1]->nOp; } assert( p->iAddriAddr]; p->iAddr++; if( p->iAddr==nOp ){ p->iSub++; p->iAddr = 0; } if( pRet->p4type==P4_SUBPROGRAM ){ int nByte = (p->nSub+1)*sizeof(SubProgram*); int j; for(j=0; jnSub; j++){ if( p->apSub[j]==pRet->p4.pProgram ) break; } if( j==p->nSub ){ p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); if( !p->apSub ){ pRet = 0; }else{ p->apSub[p->nSub++] = pRet->p4.pProgram; } } } } return pRet; } /* ** Check if the program stored in the VM associated with pParse may ** throw an ABORT exception (causing the statement, but not entire transaction ** to be rolled back). This condition is true if the main program or any ** sub-programs contains any of the following: ** ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. ** * OP_Destroy ** * OP_VUpdate ** * OP_VRename ** * OP_FkCounter with P2==0 (immediate foreign key constraint) ** ** Then check that the value of Parse.mayAbort is true if an ** ABORT may be thrown, or false otherwise. Return true if it does ** match, or false otherwise. This function is intended to be used as ** part of an assert statement in the compiler. Similar to: ** ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); */ int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ int hasAbort = 0; Op *pOp; VdbeOpIter sIter; memset(&sIter, 0, sizeof(sIter)); sIter.v = v; while( (pOp = opIterNext(&sIter))!=0 ){ int opcode = pOp->opcode; if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename #ifndef SQLITE_OMIT_FOREIGN_KEY || (opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1) #endif || ((opcode==OP_Halt || opcode==OP_HaltIfNull) && (pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) ){ hasAbort = 1; break; } } sqlite3DbFree(v->db, sIter.apSub); /* Return true if hasAbort==mayAbort. Or if a malloc failure occured. ** If malloc failed, then the while() loop above may not have iterated ** through all opcodes and hasAbort may be set incorrectly. Return ** true for this case to prevent the assert() in the callers frame ** from failing. */ return ( v->db->mallocFailed || hasAbort==mayAbort ); } #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ /* ** Loop through the program looking for P2 values that are negative ** on jump instructions. Each such value is a label. Resolve the ** label by setting the P2 value to its correct non-zero value. ** ** This routine is called once after all opcodes have been inserted. ** ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array. ** ** The Op.opflags field is set on all opcodes. */ static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ int i; int nMaxArgs = *pMaxFuncArgs; Op *pOp; int *aLabel = p->aLabel; p->readOnly = 1; for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ u8 opcode = pOp->opcode; pOp->opflags = sqlite3OpcodeProperty[opcode]; if( opcode==OP_Function || opcode==OP_AggStep ){ if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5; }else if( opcode==OP_Transaction && pOp->p2!=0 ){ p->readOnly = 0; #ifndef SQLITE_OMIT_VIRTUALTABLE }else if( opcode==OP_VUpdate ){ if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; }else if( opcode==OP_VFilter ){ int n; assert( p->nOp - i >= 3 ); assert( pOp[-1].opcode==OP_Integer ); n = pOp[-1].p1; if( n>nMaxArgs ) nMaxArgs = n; #endif } if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){ assert( -1-pOp->p2nLabel ); pOp->p2 = aLabel[-1-pOp->p2]; } } sqlite3DbFree(p->db, p->aLabel); p->aLabel = 0; *pMaxFuncArgs = nMaxArgs; } /* ** Return the address of the next instruction to be inserted. */ int sqlite3VdbeCurrentAddr(Vdbe *p){ assert( p->magic==VDBE_MAGIC_INIT ); return p->nOp; } /* ** This function returns a pointer to the array of opcodes associated with ** the Vdbe passed as the first argument. It is the callers responsibility ** to arrange for the returned array to be eventually freed using the ** vdbeFreeOpArray() function. ** ** Before returning, *pnOp is set to the number of entries in the returned ** array. Also, *pnMaxArg is set to the larger of its current value and ** the number of entries in the Vdbe.apArg[] array required to execute the ** returned program. */ VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ VdbeOp *aOp = p->aOp; assert( aOp && !p->db->mallocFailed ); /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ assert( p->aMutex.nMutex==0 ); resolveP2Values(p, pnMaxArg); *pnOp = p->nOp; p->aOp = 0; return aOp; } /* ** Add a whole list of operations to the operation stack. Return the ** address of the first operation added. */ int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){ int addr; assert( p->magic==VDBE_MAGIC_INIT ); if( p->nOp + nOp > p->nOpAlloc && growOpArray(p) ){ return 0; } addr = p->nOp; if( ALWAYS(nOp>0) ){ int i; VdbeOpList const *pIn = aOp; for(i=0; ip2; VdbeOp *pOut = &p->aOp[i+addr]; pOut->opcode = pIn->opcode; pOut->p1 = pIn->p1; if( p2<0 && (sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP)!=0 ){ pOut->p2 = addr + ADDR(p2); }else{ pOut->p2 = p2; } pOut->p3 = pIn->p3; pOut->p4type = P4_NOTUSED; pOut->p4.p = 0; pOut->p5 = 0; #ifdef SQLITE_DEBUG pOut->zComment = 0; if( sqlite3VdbeAddopTrace ){ sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]); } #endif } p->nOp += nOp; } return addr; } /* ** Change the value of the P1 operand for a specific instruction. ** This routine is useful when a large program is loaded from a ** static array using sqlite3VdbeAddOpList but we want to make a ** few minor changes to the program. */ void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){ assert( p!=0 ); assert( addr>=0 ); if( p->nOp>addr ){ p->aOp[addr].p1 = val; } } /* ** Change the value of the P2 operand for a specific instruction. ** This routine is useful for setting a jump destination. */ void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){ assert( p!=0 ); assert( addr>=0 ); if( p->nOp>addr ){ p->aOp[addr].p2 = val; } } /* ** Change the value of the P3 operand for a specific instruction. */ void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){ assert( p!=0 ); assert( addr>=0 ); if( p->nOp>addr ){ p->aOp[addr].p3 = val; } } /* ** Change the value of the P5 operand for the most recently ** added operation. */ void sqlite3VdbeChangeP5(Vdbe *p, u8 val){ assert( p!=0 ); if( p->aOp ){ assert( p->nOp>0 ); p->aOp[p->nOp-1].p5 = val; } } /* ** Change the P2 operand of instruction addr so that it points to ** the address of the next instruction to be coded. */ void sqlite3VdbeJumpHere(Vdbe *p, int addr){ sqlite3VdbeChangeP2(p, addr, p->nOp); } /* ** If the input FuncDef structure is ephemeral, then free it. If ** the FuncDef is not ephermal, then do nothing. */ static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ if( ALWAYS(pDef) && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){ sqlite3DbFree(db, pDef); } } static void vdbeFreeOpArray(sqlite3 *, Op *, int); /* ** Delete a P4 value if necessary. */ static void freeP4(sqlite3 *db, int p4type, void *p4){ if( p4 ){ assert( db ); switch( p4type ){ case P4_REAL: case P4_INT64: case P4_DYNAMIC: case P4_KEYINFO: case P4_INTARRAY: case P4_KEYINFO_HANDOFF: { sqlite3DbFree(db, p4); break; } case P4_MPRINTF: { if( db->pnBytesFreed==0 ) sqlite3_free(p4); break; } case P4_VDBEFUNC: { VdbeFunc *pVdbeFunc = (VdbeFunc *)p4; freeEphemeralFunction(db, pVdbeFunc->pFunc); if( db->pnBytesFreed==0 ) sqlite3VdbeDeleteAuxData(pVdbeFunc, 0); sqlite3DbFree(db, pVdbeFunc); break; } case P4_FUNCDEF: { freeEphemeralFunction(db, (FuncDef*)p4); break; } case P4_MEM: { if( db->pnBytesFreed==0 ){ sqlite3ValueFree((sqlite3_value*)p4); }else{ Mem *p = (Mem*)p4; sqlite3DbFree(db, p->zMalloc); sqlite3DbFree(db, p); } break; } case P4_VTAB : { if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); break; } } } } /* ** Free the space allocated for aOp and any p4 values allocated for the ** opcodes contained within. If aOp is not NULL it is assumed to contain ** nOp entries. */ static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ if( aOp ){ Op *pOp; for(pOp=aOp; pOp<&aOp[nOp]; pOp++){ freeP4(db, pOp->p4type, pOp->p4.p); #ifdef SQLITE_DEBUG sqlite3DbFree(db, pOp->zComment); #endif } } sqlite3DbFree(db, aOp); } /* ** Link the SubProgram object passed as the second argument into the linked ** list at Vdbe.pSubProgram. This list is used to delete all sub-program ** objects when the VM is no longer required. */ void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ p->pNext = pVdbe->pProgram; pVdbe->pProgram = p; } /* ** Change N opcodes starting at addr to No-ops. */ void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){ if( p->aOp ){ VdbeOp *pOp = &p->aOp[addr]; sqlite3 *db = p->db; while( N-- ){ freeP4(db, pOp->p4type, pOp->p4.p); memset(pOp, 0, sizeof(pOp[0])); pOp->opcode = OP_Noop; pOp++; } } } /* ** Change the value of the P4 operand for a specific instruction. ** This routine is useful when a large program is loaded from a ** static array using sqlite3VdbeAddOpList but we want to make a ** few minor changes to the program. ** ** If n>=0 then the P4 operand is dynamic, meaning that a copy of ** the string is made into memory obtained from sqlite3_malloc(). ** A value of n==0 means copy bytes of zP4 up to and including the ** first null byte. If n>0 then copy n+1 bytes of zP4. ** ** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure. ** A copy is made of the KeyInfo structure into memory obtained from ** sqlite3_malloc, to be freed when the Vdbe is finalized. ** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure ** stored in memory that the caller has obtained from sqlite3_malloc. The ** caller should not free the allocation, it will be freed when the Vdbe is ** finalized. ** ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points ** to a string or structure that is guaranteed to exist for the lifetime of ** the Vdbe. In these cases we can just copy the pointer. ** ** If addr<0 then change P4 on the most recently inserted instruction. */ void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ Op *pOp; sqlite3 *db; assert( p!=0 ); db = p->db; assert( p->magic==VDBE_MAGIC_INIT ); if( p->aOp==0 || db->mallocFailed ){ if ( n!=P4_KEYINFO && n!=P4_VTAB ) { freeP4(db, n, (void*)*(char**)&zP4); } return; } assert( p->nOp>0 ); assert( addrnOp ); if( addr<0 ){ addr = p->nOp - 1; } pOp = &p->aOp[addr]; freeP4(db, pOp->p4type, pOp->p4.p); pOp->p4.p = 0; if( n==P4_INT32 ){ /* Note: this cast is safe, because the origin data point was an int ** that was cast to a (const char *). */ pOp->p4.i = SQLITE_PTR_TO_INT(zP4); pOp->p4type = P4_INT32; }else if( zP4==0 ){ pOp->p4.p = 0; pOp->p4type = P4_NOTUSED; }else if( n==P4_KEYINFO ){ KeyInfo *pKeyInfo; int nField, nByte; nField = ((KeyInfo*)zP4)->nField; nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField; pKeyInfo = sqlite3DbMallocRaw(0, nByte); pOp->p4.pKeyInfo = pKeyInfo; if( pKeyInfo ){ u8 *aSortOrder; memcpy((char*)pKeyInfo, zP4, nByte - nField); aSortOrder = pKeyInfo->aSortOrder; if( aSortOrder ){ pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField]; memcpy(pKeyInfo->aSortOrder, aSortOrder, nField); } pOp->p4type = P4_KEYINFO; }else{ p->db->mallocFailed = 1; pOp->p4type = P4_NOTUSED; } }else if( n==P4_KEYINFO_HANDOFF ){ pOp->p4.p = (void*)zP4; pOp->p4type = P4_KEYINFO; }else if( n==P4_VTAB ){ pOp->p4.p = (void*)zP4; pOp->p4type = P4_VTAB; sqlite3VtabLock((VTable *)zP4); assert( ((VTable *)zP4)->db==p->db ); }else if( n<0 ){ pOp->p4.p = (void*)zP4; pOp->p4type = (signed char)n; }else{ if( n==0 ) n = sqlite3Strlen30(zP4); pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); pOp->p4type = P4_DYNAMIC; } } #ifndef NDEBUG /* ** Change the comment on the the most recently coded instruction. Or ** insert a No-op and add the comment to that new instruction. This ** makes the code easier to read during debugging. None of this happens ** in a production build. */ void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ va_list ap; if( !p ) return; assert( p->nOp>0 || p->aOp==0 ); assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); if( p->nOp ){ char **pz = &p->aOp[p->nOp-1].zComment; va_start(ap, zFormat); sqlite3DbFree(p->db, *pz); *pz = sqlite3VMPrintf(p->db, zFormat, ap); va_end(ap); } } void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ va_list ap; if( !p ) return; sqlite3VdbeAddOp0(p, OP_Noop); assert( p->nOp>0 || p->aOp==0 ); assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); if( p->nOp ){ char **pz = &p->aOp[p->nOp-1].zComment; va_start(ap, zFormat); sqlite3DbFree(p->db, *pz); *pz = sqlite3VMPrintf(p->db, zFormat, ap); va_end(ap); } } #endif /* NDEBUG */ /* ** Return the opcode for a given address. If the address is -1, then ** return the most recently inserted opcode. ** ** If a memory allocation error has occurred prior to the calling of this ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode ** is readable but not writable, though it is cast to a writable value. ** The return of a dummy opcode allows the call to continue functioning ** after a OOM fault without having to check to see if the return from ** this routine is a valid pointer. But because the dummy.opcode is 0, ** dummy will never be written to. This is verified by code inspection and ** by running with Valgrind. ** ** About the #ifdef SQLITE_OMIT_TRACE: Normally, this routine is never called ** unless p->nOp>0. This is because in the absense of SQLITE_OMIT_TRACE, ** an OP_Trace instruction is always inserted by sqlite3VdbeGet() as soon as ** a new VDBE is created. So we are free to set addr to p->nOp-1 without ** having to double-check to make sure that the result is non-negative. But ** if SQLITE_OMIT_TRACE is defined, the OP_Trace is omitted and we do need to ** check the value of p->nOp-1 before continuing. */ VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ /* C89 specifies that the constant "dummy" will be initialized to all ** zeros, which is correct. MSVC generates a warning, nevertheless. */ static const VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ assert( p->magic==VDBE_MAGIC_INIT ); if( addr<0 ){ #ifdef SQLITE_OMIT_TRACE if( p->nOp==0 ) return (VdbeOp*)&dummy; #endif addr = p->nOp - 1; } assert( (addr>=0 && addrnOp) || p->db->mallocFailed ); if( p->db->mallocFailed ){ return (VdbeOp*)&dummy; }else{ return &p->aOp[addr]; } } #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \ || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) /* ** Compute a string that describes the P4 parameter for an opcode. ** Use zTemp for any required temporary buffer space. */ static char *displayP4(Op *pOp, char *zTemp, int nTemp){ char *zP4 = zTemp; assert( nTemp>=20 ); switch( pOp->p4type ){ case P4_KEYINFO_STATIC: case P4_KEYINFO: { int i, j; KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField); i = sqlite3Strlen30(zTemp); for(j=0; jnField; j++){ CollSeq *pColl = pKeyInfo->aColl[j]; if( pColl ){ int n = sqlite3Strlen30(pColl->zName); if( i+n>nTemp-6 ){ memcpy(&zTemp[i],",...",4); break; } zTemp[i++] = ','; if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){ zTemp[i++] = '-'; } memcpy(&zTemp[i], pColl->zName,n+1); i += n; }else if( i+4p4.pColl; sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName); break; } case P4_FUNCDEF: { FuncDef *pDef = pOp->p4.pFunc; sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg); break; } case P4_INT64: { sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64); break; } case P4_INT32: { sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i); break; } case P4_REAL: { sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal); break; } case P4_MEM: { Mem *pMem = pOp->p4.pMem; assert( (pMem->flags & MEM_Null)==0 ); if( pMem->flags & MEM_Str ){ zP4 = pMem->z; }else if( pMem->flags & MEM_Int ){ sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i); }else if( pMem->flags & MEM_Real ){ sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r); }else{ assert( pMem->flags & MEM_Blob ); zP4 = "(blob)"; } break; } #ifndef SQLITE_OMIT_VIRTUALTABLE case P4_VTAB: { sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule); break; } #endif case P4_INTARRAY: { sqlite3_snprintf(nTemp, zTemp, "intarray"); break; } case P4_SUBPROGRAM: { sqlite3_snprintf(nTemp, zTemp, "program"); break; } default: { zP4 = pOp->p4.z; if( zP4==0 ){ zP4 = zTemp; zTemp[0] = 0; } } } assert( zP4!=0 ); return zP4; } #endif /* ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. ** ** The prepared statement has to know in advance which Btree objects ** will be used so that it can acquire mutexes on them all in sorted ** order (via sqlite3VdbeMutexArrayEnter(). Mutexes are acquired ** in order (and released in reverse order) to avoid deadlocks. */ void sqlite3VdbeUsesBtree(Vdbe *p, int i){ int mask; assert( i>=0 && idb->nDb && ibtreeMask)*8 ); mask = ((u32)1)<btreeMask & mask)==0 ){ p->btreeMask |= mask; sqlite3BtreeMutexArrayInsert(&p->aMutex, p->db->aDb[i].pBt); } } #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) /* ** Print a single opcode. This routine is used for debugging only. */ void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ char *zP4; char zPtr[50]; static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n"; if( pOut==0 ) pOut = stdout; zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); fprintf(pOut, zFormat1, pc, sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, #ifdef SQLITE_DEBUG pOp->zComment ? pOp->zComment : "" #else "" #endif ); fflush(pOut); } #endif /* ** Release an array of N Mem elements */ static void releaseMemArray(Mem *p, int N){ if( p && N ){ Mem *pEnd; sqlite3 *db = p->db; u8 malloc_failed = db->mallocFailed; if( db->pnBytesFreed ){ for(pEnd=&p[N]; pzMalloc); } return; } for(pEnd=&p[N]; pflags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ sqlite3VdbeMemRelease(p); }else if( p->zMalloc ){ sqlite3DbFree(db, p->zMalloc); p->zMalloc = 0; } p->flags = MEM_Null; } db->mallocFailed = malloc_failed; } } /* ** Delete a VdbeFrame object and its contents. VdbeFrame objects are ** allocated by the OP_Program opcode in sqlite3VdbeExec(). */ void sqlite3VdbeFrameDelete(VdbeFrame *p){ int i; Mem *aMem = VdbeFrameMem(p); VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; for(i=0; inChildCsr; i++){ sqlite3VdbeFreeCursor(p->v, apCsr[i]); } releaseMemArray(aMem, p->nChildMem); sqlite3DbFree(p->v->db, p); } #ifndef SQLITE_OMIT_EXPLAIN /* ** Give a listing of the program in the virtual machine. ** ** The interface is the same as sqlite3VdbeExec(). But instead of ** running the code, it invokes the callback once for each instruction. ** This feature is used to implement "EXPLAIN". ** ** When p->explain==1, each instruction is listed. When ** p->explain==2, only OP_Explain instructions are listed and these ** are shown in a different format. p->explain==2 is used to implement ** EXPLAIN QUERY PLAN. ** ** When p->explain==1, first the main program is listed, then each of ** the trigger subprograms are listed one by one. */ int sqlite3VdbeList( Vdbe *p /* The VDBE */ ){ int nRow; /* Stop when row count reaches this */ int nSub = 0; /* Number of sub-vdbes seen so far */ SubProgram **apSub = 0; /* Array of sub-vdbes */ Mem *pSub = 0; /* Memory cell hold array of subprogs */ sqlite3 *db = p->db; /* The database connection */ int i; /* Loop counter */ int rc = SQLITE_OK; /* Return code */ Mem *pMem = p->pResultSet = &p->aMem[1]; /* First Mem of result set */ assert( p->explain ); assert( p->magic==VDBE_MAGIC_RUN ); assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); /* Even though this opcode does not use dynamic strings for ** the result, result columns may become dynamic if the user calls ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. */ releaseMemArray(pMem, 8); if( p->rc==SQLITE_NOMEM ){ /* This happens if a malloc() inside a call to sqlite3_column_text() or ** sqlite3_column_text16() failed. */ db->mallocFailed = 1; return SQLITE_ERROR; } /* When the number of output rows reaches nRow, that means the ** listing has finished and sqlite3_step() should return SQLITE_DONE. ** nRow is the sum of the number of rows in the main program, plus ** the sum of the number of rows in all trigger subprograms encountered ** so far. The nRow value will increase as new trigger subprograms are ** encountered, but p->pc will eventually catch up to nRow. */ nRow = p->nOp; if( p->explain==1 ){ /* The first 8 memory cells are used for the result set. So we will ** commandeer the 9th cell to use as storage for an array of pointers ** to trigger subprograms. The VDBE is guaranteed to have at least 9 ** cells. */ assert( p->nMem>9 ); pSub = &p->aMem[9]; if( pSub->flags&MEM_Blob ){ /* On the first call to sqlite3_step(), pSub will hold a NULL. It is ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */ nSub = pSub->n/sizeof(Vdbe*); apSub = (SubProgram **)pSub->z; } for(i=0; inOp; } } do{ i = p->pc++; }while( iexplain==2 && p->aOp[i].opcode!=OP_Explain ); if( i>=nRow ){ p->rc = SQLITE_OK; rc = SQLITE_DONE; }else if( db->u1.isInterrupted ){ p->rc = SQLITE_INTERRUPT; rc = SQLITE_ERROR; sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc)); }else{ char *z; Op *pOp; if( inOp ){ /* The output line number is small enough that we are still in the ** main program. */ pOp = &p->aOp[i]; }else{ /* We are currently listing subprograms. Figure out which one and ** pick up the appropriate opcode. */ int j; i -= p->nOp; for(j=0; i>=apSub[j]->nOp; j++){ i -= apSub[j]->nOp; } pOp = &apSub[j]->aOp[i]; } if( p->explain==1 ){ pMem->flags = MEM_Int; pMem->type = SQLITE_INTEGER; pMem->u.i = i; /* Program counter */ pMem++; pMem->flags = MEM_Static|MEM_Str|MEM_Term; pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ assert( pMem->z!=0 ); pMem->n = sqlite3Strlen30(pMem->z); pMem->type = SQLITE_TEXT; pMem->enc = SQLITE_UTF8; pMem++; /* When an OP_Program opcode is encounter (the only opcode that has ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms ** kept in p->aMem[9].z to hold the new program - assuming this subprogram ** has not already been seen. */ if( pOp->p4type==P4_SUBPROGRAM ){ int nByte = (nSub+1)*sizeof(SubProgram*); int j; for(j=0; jp4.pProgram ) break; } if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, 1) ){ apSub = (SubProgram **)pSub->z; apSub[nSub++] = pOp->p4.pProgram; pSub->flags |= MEM_Blob; pSub->n = nSub*sizeof(SubProgram*); } } } pMem->flags = MEM_Int; pMem->u.i = pOp->p1; /* P1 */ pMem->type = SQLITE_INTEGER; pMem++; pMem->flags = MEM_Int; pMem->u.i = pOp->p2; /* P2 */ pMem->type = SQLITE_INTEGER; pMem++; if( p->explain==1 ){ pMem->flags = MEM_Int; pMem->u.i = pOp->p3; /* P3 */ pMem->type = SQLITE_INTEGER; pMem++; } if( sqlite3VdbeMemGrow(pMem, 32, 0) ){ /* P4 */ assert( p->db->mallocFailed ); return SQLITE_ERROR; } pMem->flags = MEM_Dyn|MEM_Str|MEM_Term; z = displayP4(pOp, pMem->z, 32); if( z!=pMem->z ){ sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0); }else{ assert( pMem->z!=0 ); pMem->n = sqlite3Strlen30(pMem->z); pMem->enc = SQLITE_UTF8; } pMem->type = SQLITE_TEXT; pMem++; if( p->explain==1 ){ if( sqlite3VdbeMemGrow(pMem, 4, 0) ){ assert( p->db->mallocFailed ); return SQLITE_ERROR; } pMem->flags = MEM_Dyn|MEM_Str|MEM_Term; pMem->n = 2; sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ pMem->type = SQLITE_TEXT; pMem->enc = SQLITE_UTF8; pMem++; #ifdef SQLITE_DEBUG if( pOp->zComment ){ pMem->flags = MEM_Str|MEM_Term; pMem->z = pOp->zComment; pMem->n = sqlite3Strlen30(pMem->z); pMem->enc = SQLITE_UTF8; pMem->type = SQLITE_TEXT; }else #endif { pMem->flags = MEM_Null; /* Comment */ pMem->type = SQLITE_NULL; } } p->nResColumn = 8 - 5*(p->explain-1); p->rc = SQLITE_OK; rc = SQLITE_ROW; } return rc; } #endif /* SQLITE_OMIT_EXPLAIN */ #ifdef SQLITE_DEBUG /* ** Print the SQL that was used to generate a VDBE program. */ void sqlite3VdbePrintSql(Vdbe *p){ int nOp = p->nOp; VdbeOp *pOp; if( nOp<1 ) return; pOp = &p->aOp[0]; if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){ const char *z = pOp->p4.z; while( sqlite3Isspace(*z) ) z++; printf("SQL: [%s]\n", z); } } #endif #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) /* ** Print an IOTRACE message showing SQL content. */ void sqlite3VdbeIOTraceSql(Vdbe *p){ int nOp = p->nOp; VdbeOp *pOp; if( sqlite3IoTrace==0 ) return; if( nOp<1 ) return; pOp = &p->aOp[0]; if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){ int i, j; char z[1000]; sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); for(i=0; sqlite3Isspace(z[i]); i++){} for(j=0; z[i]; i++){ if( sqlite3Isspace(z[i]) ){ if( z[i-1]!=' ' ){ z[j++] = ' '; } }else{ z[j++] = z[i]; } } z[j] = 0; sqlite3IoTrace("SQL %s\n", z); } } #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ /* ** Allocate space from a fixed size buffer and return a pointer to ** that space. If insufficient space is available, return NULL. ** ** The pBuf parameter is the initial value of a pointer which will ** receive the new memory. pBuf is normally NULL. If pBuf is not ** NULL, it means that memory space has already been allocated and that ** this routine should not allocate any new memory. When pBuf is not ** NULL simply return pBuf. Only allocate new memory space when pBuf ** is NULL. ** ** nByte is the number of bytes of space needed. ** ** *ppFrom points to available space and pEnd points to the end of the ** available space. When space is allocated, *ppFrom is advanced past ** the end of the allocated space. ** ** *pnByte is a counter of the number of bytes of space that have failed ** to allocate. If there is insufficient space in *ppFrom to satisfy the ** request, then increment *pnByte by the amount of the request. */ static void *allocSpace( void *pBuf, /* Where return pointer will be stored */ int nByte, /* Number of bytes to allocate */ u8 **ppFrom, /* IN/OUT: Allocate from *ppFrom */ u8 *pEnd, /* Pointer to 1 byte past the end of *ppFrom buffer */ int *pnByte /* If allocation cannot be made, increment *pnByte */ ){ assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) ); if( pBuf ) return pBuf; nByte = ROUND8(nByte); if( &(*ppFrom)[nByte] <= pEnd ){ pBuf = (void*)*ppFrom; *ppFrom += nByte; }else{ *pnByte += nByte; } return pBuf; } /* ** Prepare a virtual machine for execution. This involves things such ** as allocating stack space and initializing the program counter. ** After the VDBE has be prepped, it can be executed by one or more ** calls to sqlite3VdbeExec(). ** ** This is the only way to move a VDBE from VDBE_MAGIC_INIT to ** VDBE_MAGIC_RUN. ** ** This function may be called more than once on a single virtual machine. ** The first call is made while compiling the SQL statement. Subsequent ** calls are made as part of the process of resetting a statement to be ** re-executed (from a call to sqlite3_reset()). The nVar, nMem, nCursor ** and isExplain parameters are only passed correct values the first time ** the function is called. On subsequent calls, from sqlite3_reset(), nVar ** is passed -1 and nMem, nCursor and isExplain are all passed zero. */ void sqlite3VdbeMakeReady( Vdbe *p, /* The VDBE */ int nVar, /* Number of '?' see in the SQL statement */ int nMem, /* Number of memory cells to allocate */ int nCursor, /* Number of cursors to allocate */ int nArg, /* Maximum number of args in SubPrograms */ int isExplain, /* True if the EXPLAIN keywords is present */ int usesStmtJournal /* True to set Vdbe.usesStmtJournal */ ){ int n; sqlite3 *db = p->db; assert( p!=0 ); assert( p->magic==VDBE_MAGIC_INIT ); /* There should be at least one opcode. */ assert( p->nOp>0 ); /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ p->magic = VDBE_MAGIC_RUN; /* For each cursor required, also allocate a memory cell. Memory ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by ** the vdbe program. Instead they are used to allocate space for ** VdbeCursor/BtCursor structures. The blob of memory associated with ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1) ** stores the blob of memory associated with cursor 1, etc. ** ** See also: allocateCursor(). */ nMem += nCursor; /* Allocate space for memory registers, SQL variables, VDBE cursors and ** an array to marshal SQL function arguments in. This is only done the ** first time this function is called for a given VDBE, not when it is ** being called from sqlite3_reset() to reset the virtual machine. */ if( nVar>=0 && ALWAYS(db->mallocFailed==0) ){ u8 *zCsr = (u8 *)&p->aOp[p->nOp]; /* Memory avaliable for alloation */ u8 *zEnd = (u8 *)&p->aOp[p->nOpAlloc]; /* First byte past available mem */ int nByte; /* How much extra memory needed */ resolveP2Values(p, &nArg); p->usesStmtJournal = (u8)usesStmtJournal; if( isExplain && nMem<10 ){ nMem = 10; } memset(zCsr, 0, zEnd-zCsr); zCsr += (zCsr - (u8*)0)&7; assert( EIGHT_BYTE_ALIGNMENT(zCsr) ); /* Memory for registers, parameters, cursor, etc, is allocated in two ** passes. On the first pass, we try to reuse unused space at the ** end of the opcode array. If we are unable to satisfy all memory ** requirements by reusing the opcode array tail, then the second ** pass will fill in the rest using a fresh allocation. ** ** This two-pass approach that reuses as much memory as possible from ** the leftover space at the end of the opcode array can significantly ** reduce the amount of memory held by a prepared statement. */ do { nByte = 0; p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte); p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte); p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte); p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte); p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*), &zCsr, zEnd, &nByte); if( nByte ){ p->pFree = sqlite3DbMallocZero(db, nByte); } zCsr = p->pFree; zEnd = &zCsr[nByte]; }while( nByte && !db->mallocFailed ); p->nCursor = (u16)nCursor; if( p->aVar ){ p->nVar = (ynVar)nVar; for(n=0; naVar[n].flags = MEM_Null; p->aVar[n].db = db; } } if( p->aMem ){ p->aMem--; /* aMem[] goes from 1..nMem */ p->nMem = nMem; /* not from 0..nMem-1 */ for(n=1; n<=nMem; n++){ p->aMem[n].flags = MEM_Null; p->aMem[n].db = db; } } } #ifdef SQLITE_DEBUG for(n=1; nnMem; n++){ assert( p->aMem[n].db==db ); } #endif p->pc = -1; p->rc = SQLITE_OK; p->errorAction = OE_Abort; p->explain |= isExplain; p->magic = VDBE_MAGIC_RUN; p->nChange = 0; p->cacheCtr = 1; p->minWriteFileFormat = 255; p->iStatement = 0; p->nFkConstraint = 0; #ifdef VDBE_PROFILE { int i; for(i=0; inOp; i++){ p->aOp[i].cnt = 0; p->aOp[i].cycles = 0; } } #endif } /* ** Close a VDBE cursor and release all the resources that cursor ** happens to hold. */ void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ if( pCx==0 ){ return; } if( pCx->pBt ){ sqlite3BtreeClose(pCx->pBt); /* The pCx->pCursor will be close automatically, if it exists, by ** the call above. */ }else if( pCx->pCursor ){ sqlite3BtreeCloseCursor(pCx->pCursor); } #ifndef SQLITE_OMIT_VIRTUALTABLE if( pCx->pVtabCursor ){ sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor; const sqlite3_module *pModule = pCx->pModule; p->inVtabMethod = 1; pModule->xClose(pVtabCursor); p->inVtabMethod = 0; } #endif } /* ** Copy the values stored in the VdbeFrame structure to its Vdbe. This ** is used, for example, when a trigger sub-program is halted to restore ** control to the main program. */ int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ Vdbe *v = pFrame->v; v->aOp = pFrame->aOp; v->nOp = pFrame->nOp; v->aMem = pFrame->aMem; v->nMem = pFrame->nMem; v->apCsr = pFrame->apCsr; v->nCursor = pFrame->nCursor; v->db->lastRowid = pFrame->lastRowid; v->nChange = pFrame->nChange; return pFrame->pc; } /* ** Close all cursors. ** ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory ** cell array. This is necessary as the memory cell array may contain ** pointers to VdbeFrame objects, which may in turn contain pointers to ** open cursors. */ static void closeAllCursors(Vdbe *p){ if( p->pFrame ){ VdbeFrame *pFrame = p->pFrame; for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); sqlite3VdbeFrameRestore(pFrame); } p->pFrame = 0; p->nFrame = 0; if( p->apCsr ){ int i; for(i=0; inCursor; i++){ VdbeCursor *pC = p->apCsr[i]; if( pC ){ sqlite3VdbeFreeCursor(p, pC); p->apCsr[i] = 0; } } } if( p->aMem ){ releaseMemArray(&p->aMem[1], p->nMem); } } /* ** Clean up the VM after execution. ** ** This routine will automatically close any cursors, lists, and/or ** sorters that were left open. It also deletes the values of ** variables in the aVar[] array. */ static void Cleanup(Vdbe *p){ sqlite3 *db = p->db; #ifdef SQLITE_DEBUG /* Execute assert() statements to ensure that the Vdbe.apCsr[] and ** Vdbe.aMem[] arrays have already been cleaned up. */ int i; for(i=0; inCursor; i++) assert( p->apCsr==0 || p->apCsr[i]==0 ); for(i=1; i<=p->nMem; i++) assert( p->aMem==0 || p->aMem[i].flags==MEM_Null ); #endif sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = 0; p->pResultSet = 0; } /* ** Set the number of result columns that will be returned by this SQL ** statement. This is now set at compile time, rather than during ** execution of the vdbe program so that sqlite3_column_count() can ** be called on an SQL statement before sqlite3_step(). */ void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ Mem *pColName; int n; sqlite3 *db = p->db; releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); sqlite3DbFree(db, p->aColName); n = nResColumn*COLNAME_N; p->nResColumn = (u16)nResColumn; p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n ); if( p->aColName==0 ) return; while( n-- > 0 ){ pColName->flags = MEM_Null; pColName->db = p->db; pColName++; } } /* ** Set the name of the idx'th column to be returned by the SQL statement. ** zName must be a pointer to a nul terminated string. ** ** This call must be made after a call to sqlite3VdbeSetNumCols(). ** ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. */ int sqlite3VdbeSetColName( Vdbe *p, /* Vdbe being configured */ int idx, /* Index of column zName applies to */ int var, /* One of the COLNAME_* constants */ const char *zName, /* Pointer to buffer containing name */ void (*xDel)(void*) /* Memory management strategy for zName */ ){ int rc; Mem *pColName; assert( idxnResColumn ); assert( vardb->mallocFailed ){ assert( !zName || xDel!=SQLITE_DYNAMIC ); return SQLITE_NOMEM; } assert( p->aColName!=0 ); pColName = &(p->aColName[idx+var*p->nResColumn]); rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); return rc; } /* ** A read or write transaction may or may not be active on database handle ** db. If a transaction is active, commit it. If there is a ** write-transaction spanning more than one database file, this routine ** takes care of the master journal trickery. */ static int vdbeCommit(sqlite3 *db, Vdbe *p){ int i; int nTrans = 0; /* Number of databases with an active write-transaction */ int rc = SQLITE_OK; int needXcommit = 0; #ifdef SQLITE_OMIT_VIRTUALTABLE /* With this option, sqlite3VtabSync() is defined to be simply ** SQLITE_OK so p is not used. */ UNUSED_PARAMETER(p); #endif /* Before doing anything else, call the xSync() callback for any ** virtual module tables written in this transaction. This has to ** be done before determining whether a master journal file is ** required, as an xSync() callback may add an attached database ** to the transaction. */ rc = sqlite3VtabSync(db, &p->zErrMsg); /* This loop determines (a) if the commit hook should be invoked and ** (b) how many database files have open write transactions, not ** including the temp database. (b) is important because if more than ** one database file has an open write transaction, a master journal ** file is required for an atomic commit. */ for(i=0; rc==SQLITE_OK && inDb; i++){ Btree *pBt = db->aDb[i].pBt; if( sqlite3BtreeIsInTrans(pBt) ){ needXcommit = 1; if( i!=1 ) nTrans++; rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt)); } } if( rc!=SQLITE_OK ){ return rc; } /* If there are any write-transactions at all, invoke the commit hook */ if( needXcommit && db->xCommitCallback ){ rc = db->xCommitCallback(db->pCommitArg); if( rc ){ return SQLITE_CONSTRAINT; } } /* The simple case - no more than one database file (not counting the ** TEMP database) has a transaction active. There is no need for the ** master-journal. ** ** If the return value of sqlite3BtreeGetFilename() is a zero length ** string, it means the main database is :memory: or a temp file. In ** that case we do not support atomic multi-file commits, so use the ** simple case then too. */ if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){ for(i=0; rc==SQLITE_OK && inDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ rc = sqlite3BtreeCommitPhaseOne(pBt, 0); } } /* Do the commit only if all databases successfully complete phase 1. ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an ** IO error while deleting or truncating a journal file. It is unlikely, ** but could happen. In this case abandon processing and return the error. */ for(i=0; rc==SQLITE_OK && inDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ rc = sqlite3BtreeCommitPhaseTwo(pBt); } } if( rc==SQLITE_OK ){ sqlite3VtabCommit(db); } } /* The complex case - There is a multi-file write-transaction active. ** This requires a master journal file to ensure the transaction is ** committed atomicly. */ #ifndef SQLITE_OMIT_DISKIO else{ sqlite3_vfs *pVfs = db->pVfs; int needSync = 0; char *zMaster = 0; /* File-name for the master journal */ char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); sqlite3_file *pMaster = 0; i64 offset = 0; int res; /* Select a master journal file name */ do { u32 iRandom; sqlite3DbFree(db, zMaster); sqlite3_randomness(sizeof(iRandom), &iRandom); zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, iRandom&0x7fffffff); if( !zMaster ){ return SQLITE_NOMEM; } rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); }while( rc==SQLITE_OK && res ); if( rc==SQLITE_OK ){ /* Open the master journal. */ rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 ); } if( rc!=SQLITE_OK ){ sqlite3DbFree(db, zMaster); return rc; } /* Write the name of each database file in the transaction into the new ** master journal file. If an error occurs at this point close ** and delete the master journal file. All the individual journal files ** still have 'null' as the master journal pointer, so they will roll ** back independently if a failure occurs. */ for(i=0; inDb; i++){ Btree *pBt = db->aDb[i].pBt; if( sqlite3BtreeIsInTrans(pBt) ){ char const *zFile = sqlite3BtreeGetJournalname(pBt); if( zFile==0 || zFile[0]==0 ){ continue; /* Ignore TEMP and :memory: databases */ } if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){ needSync = 1; } rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset); offset += sqlite3Strlen30(zFile)+1; if( rc!=SQLITE_OK ){ sqlite3OsCloseFree(pMaster); sqlite3OsDelete(pVfs, zMaster, 0); sqlite3DbFree(db, zMaster); return rc; } } } /* Sync the master journal file. If the IOCAP_SEQUENTIAL device ** flag is set this is not required. */ if( needSync && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL) && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL)) ){ sqlite3OsCloseFree(pMaster); sqlite3OsDelete(pVfs, zMaster, 0); sqlite3DbFree(db, zMaster); return rc; } /* Sync all the db files involved in the transaction. The same call ** sets the master journal pointer in each individual journal. If ** an error occurs here, do not delete the master journal file. ** ** If the error occurs during the first call to ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the ** master journal file will be orphaned. But we cannot delete it, ** in case the master journal file name was written into the journal ** file before the failure occurred. */ for(i=0; rc==SQLITE_OK && inDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); } } sqlite3OsCloseFree(pMaster); assert( rc!=SQLITE_BUSY ); if( rc!=SQLITE_OK ){ sqlite3DbFree(db, zMaster); return rc; } /* Delete the master journal file. This commits the transaction. After ** doing this the directory is synced again before any individual ** transaction files are deleted. */ rc = sqlite3OsDelete(pVfs, zMaster, 1); sqlite3DbFree(db, zMaster); zMaster = 0; if( rc ){ return rc; } /* All files and directories have already been synced, so the following ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and ** deleting or truncating journals. If something goes wrong while ** this is happening we don't really care. The integrity of the ** transaction is already guaranteed, but some stray 'cold' journals ** may be lying around. Returning an error code won't help matters. */ disable_simulated_io_errors(); sqlite3BeginBenignMalloc(); for(i=0; inDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ sqlite3BtreeCommitPhaseTwo(pBt); } } sqlite3EndBenignMalloc(); enable_simulated_io_errors(); sqlite3VtabCommit(db); } #endif return rc; } /* ** This routine checks that the sqlite3.activeVdbeCnt count variable ** matches the number of vdbe's in the list sqlite3.pVdbe that are ** currently active. An assertion fails if the two counts do not match. ** This is an internal self-check only - it is not an essential processing ** step. ** ** This is a no-op if NDEBUG is defined. */ #ifndef NDEBUG static void checkActiveVdbeCnt(sqlite3 *db){ Vdbe *p; int cnt = 0; int nWrite = 0; p = db->pVdbe; while( p ){ if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){ cnt++; if( p->readOnly==0 ) nWrite++; } p = p->pNext; } assert( cnt==db->activeVdbeCnt ); assert( nWrite==db->writeVdbeCnt ); } #else #define checkActiveVdbeCnt(x) #endif /* ** For every Btree that in database connection db which ** has been modified, "trip" or invalidate each cursor in ** that Btree might have been modified so that the cursor ** can never be used again. This happens when a rollback *** occurs. We have to trip all the other cursors, even ** cursor from other VMs in different database connections, ** so that none of them try to use the data at which they ** were pointing and which now may have been changed due ** to the rollback. ** ** Remember that a rollback can delete tables complete and ** reorder rootpages. So it is not sufficient just to save ** the state of the cursor. We have to invalidate the cursor ** so that it is never used again. */ static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){ int i; for(i=0; inDb; i++){ Btree *p = db->aDb[i].pBt; if( p && sqlite3BtreeIsInTrans(p) ){ sqlite3BtreeTripAllCursors(p, SQLITE_ABORT); } } } /* ** If the Vdbe passed as the first argument opened a statement-transaction, ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the ** statement transaction is commtted. ** ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. ** Otherwise SQLITE_OK. */ int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ sqlite3 *const db = p->db; int rc = SQLITE_OK; /* If p->iStatement is greater than zero, then this Vdbe opened a ** statement transaction that should be closed here. The only exception ** is that an IO error may have occured, causing an emergency rollback. ** In this case (db->nStatement==0), and there is nothing to do. */ if( db->nStatement && p->iStatement ){ int i; const int iSavepoint = p->iStatement-1; assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); assert( db->nStatement>0 ); assert( p->iStatement==(db->nStatement+db->nSavepoint) ); for(i=0; inDb; i++){ int rc2 = SQLITE_OK; Btree *pBt = db->aDb[i].pBt; if( pBt ){ if( eOp==SAVEPOINT_ROLLBACK ){ rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); } if( rc2==SQLITE_OK ){ rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); } if( rc==SQLITE_OK ){ rc = rc2; } } } db->nStatement--; p->iStatement = 0; /* If the statement transaction is being rolled back, also restore the ** database handles deferred constraint counter to the value it had when ** the statement transaction was opened. */ if( eOp==SAVEPOINT_ROLLBACK ){ db->nDeferredCons = p->nStmtDefCons; } } return rc; } /* ** If SQLite is compiled to support shared-cache mode and to be threadsafe, ** this routine obtains the mutex associated with each BtShared structure ** that may be accessed by the VM passed as an argument. In doing so it ** sets the BtShared.db member of each of the BtShared structures, ensuring ** that the correct busy-handler callback is invoked if required. ** ** If SQLite is not threadsafe but does support shared-cache mode, then ** sqlite3BtreeEnterAll() is invoked to set the BtShared.db variables ** of all of BtShared structures accessible via the database handle ** associated with the VM. Of course only a subset of these structures ** will be accessed by the VM, and we could use Vdbe.btreeMask to figure ** that subset out, but there is no advantage to doing so. ** ** If SQLite is not threadsafe and does not support shared-cache mode, this ** function is a no-op. */ #ifndef SQLITE_OMIT_SHARED_CACHE void sqlite3VdbeMutexArrayEnter(Vdbe *p){ #if SQLITE_THREADSAFE sqlite3BtreeMutexArrayEnter(&p->aMutex); #else sqlite3BtreeEnterAll(p->db); #endif } #endif /* ** This function is called when a transaction opened by the database ** handle associated with the VM passed as an argument is about to be ** committed. If there are outstanding deferred foreign key constraint ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. ** ** If there are outstanding FK violations and this function returns ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT and write ** an error message to it. Then return SQLITE_ERROR. */ #ifndef SQLITE_OMIT_FOREIGN_KEY int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ sqlite3 *db = p->db; if( (deferred && db->nDeferredCons>0) || (!deferred && p->nFkConstraint>0) ){ p->rc = SQLITE_CONSTRAINT; p->errorAction = OE_Abort; sqlite3SetString(&p->zErrMsg, db, "foreign key constraint failed"); return SQLITE_ERROR; } return SQLITE_OK; } #endif /* ** This routine is called the when a VDBE tries to halt. If the VDBE ** has made changes and is in autocommit mode, then commit those ** changes. If a rollback is needed, then do the rollback. ** ** This routine is the only way to move the state of a VM from ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to ** call this on a VM that is in the SQLITE_MAGIC_HALT state. ** ** Return an error code. If the commit could not complete because of ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it ** means the close did not happen and needs to be repeated. */ int sqlite3VdbeHalt(Vdbe *p){ int rc; /* Used to store transient return codes */ sqlite3 *db = p->db; /* This function contains the logic that determines if a statement or ** transaction will be committed or rolled back as a result of the ** execution of this virtual machine. ** ** If any of the following errors occur: ** ** SQLITE_NOMEM ** SQLITE_IOERR ** SQLITE_FULL ** SQLITE_INTERRUPT ** ** Then the internal cache might have been left in an inconsistent ** state. We need to rollback the statement transaction, if there is ** one, or the complete transaction if there is no statement transaction. */ if( p->db->mallocFailed ){ p->rc = SQLITE_NOMEM; } closeAllCursors(p); if( p->magic!=VDBE_MAGIC_RUN ){ return SQLITE_OK; } checkActiveVdbeCnt(db); /* No commit or rollback needed if the program never started */ if( p->pc>=0 ){ int mrc; /* Primary error code from p->rc */ int eStatementOp = 0; int isSpecialError; /* Set to true if a 'special' error */ /* Lock all btrees used by the statement */ sqlite3VdbeMutexArrayEnter(p); /* Check for one of the special errors */ mrc = p->rc & 0xff; assert( p->rc!=SQLITE_IOERR_BLOCKED ); /* This error no longer exists */ isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; if( isSpecialError ){ /* If the query was read-only and the error code is SQLITE_INTERRUPT, ** no rollback is necessary. Otherwise, at least a savepoint ** transaction must be rolled back to restore the database to a ** consistent state. ** ** Even if the statement is read-only, it is important to perform ** a statement or transaction rollback operation. If the error ** occured while writing to the journal, sub-journal or database ** file as part of an effort to free up cache space (see function ** pagerStress() in pager.c), the rollback is required to restore ** the pager to a consistent state. */ if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ eStatementOp = SAVEPOINT_ROLLBACK; }else{ /* We are forced to roll back the active transaction. Before doing ** so, abort any other statements this handle currently has active. */ invalidateCursorsOnModifiedBtrees(db); sqlite3RollbackAll(db); sqlite3CloseSavepoints(db); db->autoCommit = 1; } } } /* Check for immediate foreign key violations. */ if( p->rc==SQLITE_OK ){ sqlite3VdbeCheckFk(p, 0); } /* If the auto-commit flag is set and this is the only active writer ** VM, then we do either a commit or rollback of the current transaction. ** ** Note: This block also runs if one of the special errors handled ** above has occurred. */ if( !sqlite3VtabInSync(db) && db->autoCommit && db->writeVdbeCnt==(p->readOnly==0) ){ if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ if( sqlite3VdbeCheckFk(p, 1) ){ sqlite3BtreeMutexArrayLeave(&p->aMutex); return SQLITE_ERROR; } /* The auto-commit flag is true, the vdbe program was successful ** or hit an 'OR FAIL' constraint and there are no deferred foreign ** key constraints to hold up the transaction. This means a commit ** is required. */ rc = vdbeCommit(db, p); if( rc==SQLITE_BUSY ){ sqlite3BtreeMutexArrayLeave(&p->aMutex); return SQLITE_BUSY; }else if( rc!=SQLITE_OK ){ p->rc = rc; sqlite3RollbackAll(db); }else{ db->nDeferredCons = 0; sqlite3CommitInternalChanges(db); } }else{ sqlite3RollbackAll(db); } db->nStatement = 0; }else if( eStatementOp==0 ){ if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ eStatementOp = SAVEPOINT_RELEASE; }else if( p->errorAction==OE_Abort ){ eStatementOp = SAVEPOINT_ROLLBACK; }else{ invalidateCursorsOnModifiedBtrees(db); sqlite3RollbackAll(db); sqlite3CloseSavepoints(db); db->autoCommit = 1; } } /* If eStatementOp is non-zero, then a statement transaction needs to ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to ** do so. If this operation returns an error, and the current statement ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the ** current statement error code. ** ** Note that sqlite3VdbeCloseStatement() can only fail if eStatementOp ** is SAVEPOINT_ROLLBACK. But if p->rc==SQLITE_OK then eStatementOp ** must be SAVEPOINT_RELEASE. Hence the NEVER(p->rc==SQLITE_OK) in ** the following code. */ if( eStatementOp ){ rc = sqlite3VdbeCloseStatement(p, eStatementOp); if( rc ){ assert( eStatementOp==SAVEPOINT_ROLLBACK ); if( NEVER(p->rc==SQLITE_OK) || p->rc==SQLITE_CONSTRAINT ){ p->rc = rc; sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = 0; } invalidateCursorsOnModifiedBtrees(db); sqlite3RollbackAll(db); sqlite3CloseSavepoints(db); db->autoCommit = 1; } } /* If this was an INSERT, UPDATE or DELETE and no statement transaction ** has been rolled back, update the database connection change-counter. */ if( p->changeCntOn ){ if( eStatementOp!=SAVEPOINT_ROLLBACK ){ sqlite3VdbeSetChanges(db, p->nChange); }else{ sqlite3VdbeSetChanges(db, 0); } p->nChange = 0; } /* Rollback or commit any schema changes that occurred. */ if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){ sqlite3ResetInternalSchema(db, 0); db->flags = (db->flags | SQLITE_InternChanges); } /* Release the locks */ sqlite3BtreeMutexArrayLeave(&p->aMutex); } /* We have successfully halted and closed the VM. Record this fact. */ if( p->pc>=0 ){ db->activeVdbeCnt--; if( !p->readOnly ){ db->writeVdbeCnt--; } assert( db->activeVdbeCnt>=db->writeVdbeCnt ); } p->magic = VDBE_MAGIC_HALT; checkActiveVdbeCnt(db); if( p->db->mallocFailed ){ p->rc = SQLITE_NOMEM; } /* If the auto-commit flag is set to true, then any locks that were held ** by connection db have now been released. Call sqlite3ConnectionUnlocked() ** to invoke any required unlock-notify callbacks. */ if( db->autoCommit ){ sqlite3ConnectionUnlocked(db); } assert( db->activeVdbeCnt>0 || db->autoCommit==0 || db->nStatement==0 ); return SQLITE_OK; } /* ** Each VDBE holds the result of the most recent sqlite3_step() call ** in p->rc. This routine sets that result back to SQLITE_OK. */ void sqlite3VdbeResetStepResult(Vdbe *p){ p->rc = SQLITE_OK; } /* ** Clean up a VDBE after execution but do not delete the VDBE just yet. ** Write any error messages into *pzErrMsg. Return the result code. ** ** After this routine is run, the VDBE should be ready to be executed ** again. ** ** To look at it another way, this routine resets the state of the ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to ** VDBE_MAGIC_INIT. */ int sqlite3VdbeReset(Vdbe *p){ sqlite3 *db; db = p->db; /* If the VM did not run to completion or if it encountered an ** error, then it might not have been halted properly. So halt ** it now. */ sqlite3VdbeHalt(p); /* If the VDBE has be run even partially, then transfer the error code ** and error message from the VDBE into the main database structure. But ** if the VDBE has just been set to run but has not actually executed any ** instructions yet, leave the main database error information unchanged. */ if( p->pc>=0 ){ if( p->zErrMsg ){ sqlite3BeginBenignMalloc(); sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,SQLITE_TRANSIENT); sqlite3EndBenignMalloc(); db->errCode = p->rc; sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = 0; }else if( p->rc ){ sqlite3Error(db, p->rc, 0); }else{ sqlite3Error(db, SQLITE_OK, 0); } if( p->runOnlyOnce ) p->expired = 1; }else if( p->rc && p->expired ){ /* The expired flag was set on the VDBE before the first call ** to sqlite3_step(). For consistency (since sqlite3_step() was ** called), set the database error in this case as well. */ sqlite3Error(db, p->rc, 0); sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = 0; } /* Reclaim all memory used by the VDBE */ Cleanup(p); /* Save profiling information from this VDBE run. */ #ifdef VDBE_PROFILE { FILE *out = fopen("vdbe_profile.out", "a"); if( out ){ int i; fprintf(out, "---- "); for(i=0; inOp; i++){ fprintf(out, "%02x", p->aOp[i].opcode); } fprintf(out, "\n"); for(i=0; inOp; i++){ fprintf(out, "%6d %10lld %8lld ", p->aOp[i].cnt, p->aOp[i].cycles, p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 ); sqlite3VdbePrintOp(out, i, &p->aOp[i]); } fclose(out); } } #endif p->magic = VDBE_MAGIC_INIT; return p->rc & db->errMask; } /* ** Clean up and delete a VDBE after execution. Return an integer which is ** the result code. Write any error message text into *pzErrMsg. */ int sqlite3VdbeFinalize(Vdbe *p){ int rc = SQLITE_OK; if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ rc = sqlite3VdbeReset(p); assert( (rc & p->db->errMask)==rc ); } sqlite3VdbeDelete(p); return rc; } /* ** Call the destructor for each auxdata entry in pVdbeFunc for which ** the corresponding bit in mask is clear. Auxdata entries beyond 31 ** are always destroyed. To destroy all auxdata entries, call this ** routine with mask==0. */ void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){ int i; for(i=0; inAux; i++){ struct AuxData *pAux = &pVdbeFunc->apAux[i]; if( (i>31 || !(mask&(((u32)1)<pAux ){ if( pAux->xDelete ){ pAux->xDelete(pAux->pAux); } pAux->pAux = 0; } } } /* ** Free all memory associated with the Vdbe passed as the second argument. ** The difference between this function and sqlite3VdbeDelete() is that ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with ** the database connection. */ void sqlite3VdbeDeleteObject(sqlite3 *db, Vdbe *p){ SubProgram *pSub, *pNext; assert( p->db==0 || p->db==db ); releaseMemArray(p->aVar, p->nVar); releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); for(pSub=p->pProgram; pSub; pSub=pNext){ pNext = pSub->pNext; vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); sqlite3DbFree(db, pSub); } vdbeFreeOpArray(db, p->aOp, p->nOp); sqlite3DbFree(db, p->aLabel); sqlite3DbFree(db, p->aColName); sqlite3DbFree(db, p->zSql); sqlite3DbFree(db, p->pFree); sqlite3DbFree(db, p); } /* ** Delete an entire VDBE. */ void sqlite3VdbeDelete(Vdbe *p){ sqlite3 *db; if( NEVER(p==0) ) return; db = p->db; if( p->pPrev ){ p->pPrev->pNext = p->pNext; }else{ assert( db->pVdbe==p ); db->pVdbe = p->pNext; } if( p->pNext ){ p->pNext->pPrev = p->pPrev; } p->magic = VDBE_MAGIC_DEAD; p->db = 0; sqlite3VdbeDeleteObject(db, p); } /* ** Make sure the cursor p is ready to read or write the row to which it ** was last positioned. Return an error code if an OOM fault or I/O error ** prevents us from positioning the cursor to its correct position. ** ** If a MoveTo operation is pending on the given cursor, then do that ** MoveTo now. If no move is pending, check to see if the row has been ** deleted out from under the cursor and if it has, mark the row as ** a NULL row. ** ** If the cursor is already pointing to the correct row and that row has ** not been deleted out from under the cursor, then this routine is a no-op. */ int sqlite3VdbeCursorMoveto(VdbeCursor *p){ if( p->deferredMoveto ){ int res, rc; #ifdef SQLITE_TEST extern int sqlite3_search_count; #endif assert( p->isTable ); rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res); if( rc ) return rc; p->lastRowid = p->movetoTarget; if( res!=0 ) return SQLITE_CORRUPT_BKPT; p->rowidIsValid = 1; #ifdef SQLITE_TEST sqlite3_search_count++; #endif p->deferredMoveto = 0; p->cacheStatus = CACHE_STALE; }else if( ALWAYS(p->pCursor) ){ int hasMoved; int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved); if( rc ) return rc; if( hasMoved ){ p->cacheStatus = CACHE_STALE; p->nullRow = 1; } } return SQLITE_OK; } /* ** The following functions: ** ** sqlite3VdbeSerialType() ** sqlite3VdbeSerialTypeLen() ** sqlite3VdbeSerialLen() ** sqlite3VdbeSerialPut() ** sqlite3VdbeSerialGet() ** ** encapsulate the code that serializes values for storage in SQLite ** data and index records. Each serialized value consists of a ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned ** integer, stored as a varint. ** ** In an SQLite index record, the serial type is stored directly before ** the blob of data that it corresponds to. In a table record, all serial ** types are stored at the start of the record, and the blobs of data at ** the end. Hence these functions allow the caller to handle the ** serial-type and data blob seperately. ** ** The following table describes the various storage classes for data: ** ** serial type bytes of data type ** -------------- --------------- --------------- ** 0 0 NULL ** 1 1 signed integer ** 2 2 signed integer ** 3 3 signed integer ** 4 4 signed integer ** 5 6 signed integer ** 6 8 signed integer ** 7 8 IEEE float ** 8 0 Integer constant 0 ** 9 0 Integer constant 1 ** 10,11 reserved for expansion ** N>=12 and even (N-12)/2 BLOB ** N>=13 and odd (N-13)/2 text ** ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions ** of SQLite will not understand those serial types. */ /* ** Return the serial-type for the value stored in pMem. */ u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){ int flags = pMem->flags; int n; if( flags&MEM_Null ){ return 0; } if( flags&MEM_Int ){ /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) i64 i = pMem->u.i; u64 u; if( file_format>=4 && (i&1)==i ){ return 8+(u32)i; } u = i<0 ? -i : i; if( u<=127 ) return 1; if( u<=32767 ) return 2; if( u<=8388607 ) return 3; if( u<=2147483647 ) return 4; if( u<=MAX_6BYTE ) return 5; return 6; } if( flags&MEM_Real ){ return 7; } assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); n = pMem->n; if( flags & MEM_Zero ){ n += pMem->u.nZero; } assert( n>=0 ); return ((n*2) + 12 + ((flags&MEM_Str)!=0)); } /* ** Return the length of the data corresponding to the supplied serial-type. */ u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ if( serial_type>=12 ){ return (serial_type-12)/2; }else{ static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 }; return aSize[serial_type]; } } /* ** If we are on an architecture with mixed-endian floating ** points (ex: ARM7) then swap the lower 4 bytes with the ** upper 4 bytes. Return the result. ** ** For most architectures, this is a no-op. ** ** (later): It is reported to me that the mixed-endian problem ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems ** that early versions of GCC stored the two words of a 64-bit ** float in the wrong order. And that error has been propagated ** ever since. The blame is not necessarily with GCC, though. ** GCC might have just copying the problem from a prior compiler. ** I am also told that newer versions of GCC that follow a different ** ABI get the byte order right. ** ** Developers using SQLite on an ARM7 should compile and run their ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG ** enabled, some asserts below will ensure that the byte order of ** floating point values is correct. ** ** (2007-08-30) Frank van Vugt has studied this problem closely ** and has send his findings to the SQLite developers. Frank ** writes that some Linux kernels offer floating point hardware ** emulation that uses only 32-bit mantissas instead of a full ** 48-bits as required by the IEEE standard. (This is the ** CONFIG_FPE_FASTFPE option.) On such systems, floating point ** byte swapping becomes very complicated. To avoid problems, ** the necessary byte swapping is carried out using a 64-bit integer ** rather than a 64-bit float. Frank assures us that the code here ** works for him. We, the developers, have no way to independently ** verify this, but Frank seems to know what he is talking about ** so we trust him. */ #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT static u64 floatSwap(u64 in){ union { u64 r; u32 i[2]; } u; u32 t; u.r = in; t = u.i[0]; u.i[0] = u.i[1]; u.i[1] = t; return u.r; } # define swapMixedEndianFloat(X) X = floatSwap(X) #else # define swapMixedEndianFloat(X) #endif /* ** Write the serialized data blob for the value stored in pMem into ** buf. It is assumed that the caller has allocated sufficient space. ** Return the number of bytes written. ** ** nBuf is the amount of space left in buf[]. nBuf must always be ** large enough to hold the entire field. Except, if the field is ** a blob with a zero-filled tail, then buf[] might be just the right ** size to hold everything except for the zero-filled tail. If buf[] ** is only big enough to hold the non-zero prefix, then only write that ** prefix into buf[]. But if buf[] is large enough to hold both the ** prefix and the tail then write the prefix and set the tail to all ** zeros. ** ** Return the number of bytes actually written into buf[]. The number ** of bytes in the zero-filled tail is included in the return value only ** if those bytes were zeroed in buf[]. */ u32 sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){ u32 serial_type = sqlite3VdbeSerialType(pMem, file_format); u32 len; /* Integer and Real */ if( serial_type<=7 && serial_type>0 ){ u64 v; u32 i; if( serial_type==7 ){ assert( sizeof(v)==sizeof(pMem->r) ); memcpy(&v, &pMem->r, sizeof(v)); swapMixedEndianFloat(v); }else{ v = pMem->u.i; } len = i = sqlite3VdbeSerialTypeLen(serial_type); assert( len<=(u32)nBuf ); while( i-- ){ buf[i] = (u8)(v&0xFF); v >>= 8; } return len; } /* String or blob */ if( serial_type>=12 ){ assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) == (int)sqlite3VdbeSerialTypeLen(serial_type) ); assert( pMem->n<=nBuf ); len = pMem->n; memcpy(buf, pMem->z, len); if( pMem->flags & MEM_Zero ){ len += pMem->u.nZero; assert( nBuf>=0 ); if( len > (u32)nBuf ){ len = (u32)nBuf; } memset(&buf[pMem->n], 0, len-pMem->n); } return len; } /* NULL or constants 0 or 1 */ return 0; } /* ** Deserialize the data blob pointed to by buf as serial type serial_type ** and store the result in pMem. Return the number of bytes read. */ u32 sqlite3VdbeSerialGet( const unsigned char *buf, /* Buffer to deserialize from */ u32 serial_type, /* Serial type to deserialize */ Mem *pMem /* Memory cell to write value into */ ){ switch( serial_type ){ case 10: /* Reserved for future use */ case 11: /* Reserved for future use */ case 0: { /* NULL */ pMem->flags = MEM_Null; break; } case 1: { /* 1-byte signed integer */ pMem->u.i = (signed char)buf[0]; pMem->flags = MEM_Int; return 1; } case 2: { /* 2-byte signed integer */ pMem->u.i = (((signed char)buf[0])<<8) | buf[1]; pMem->flags = MEM_Int; return 2; } case 3: { /* 3-byte signed integer */ pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2]; pMem->flags = MEM_Int; return 3; } case 4: { /* 4-byte signed integer */ pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3]; pMem->flags = MEM_Int; return 4; } case 5: { /* 6-byte signed integer */ u64 x = (((signed char)buf[0])<<8) | buf[1]; u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5]; x = (x<<32) | y; pMem->u.i = *(i64*)&x; pMem->flags = MEM_Int; return 6; } case 6: /* 8-byte signed integer */ case 7: { /* IEEE floating point */ u64 x; u32 y; #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) /* Verify that integers and floating point values use the same ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is ** defined that 64-bit floating point values really are mixed ** endian. */ static const u64 t1 = ((u64)0x3ff00000)<<32; static const double r1 = 1.0; u64 t2 = t1; swapMixedEndianFloat(t2); assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); #endif x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3]; y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7]; x = (x<<32) | y; if( serial_type==6 ){ pMem->u.i = *(i64*)&x; pMem->flags = MEM_Int; }else{ assert( sizeof(x)==8 && sizeof(pMem->r)==8 ); swapMixedEndianFloat(x); memcpy(&pMem->r, &x, sizeof(x)); pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real; } return 8; } case 8: /* Integer 0 */ case 9: { /* Integer 1 */ pMem->u.i = serial_type-8; pMem->flags = MEM_Int; return 0; } default: { u32 len = (serial_type-12)/2; pMem->z = (char *)buf; pMem->n = len; pMem->xDel = 0; if( serial_type&0x01 ){ pMem->flags = MEM_Str | MEM_Ephem; }else{ pMem->flags = MEM_Blob | MEM_Ephem; } return len; } } return 0; } /* ** Given the nKey-byte encoding of a record in pKey[], parse the ** record into a UnpackedRecord structure. Return a pointer to ** that structure. ** ** The calling function might provide szSpace bytes of memory ** space at pSpace. This space can be used to hold the returned ** VDbeParsedRecord structure if it is large enough. If it is ** not big enough, space is obtained from sqlite3_malloc(). ** ** The returned structure should be closed by a call to ** sqlite3VdbeDeleteUnpackedRecord(). */ UnpackedRecord *sqlite3VdbeRecordUnpack( KeyInfo *pKeyInfo, /* Information about the record format */ int nKey, /* Size of the binary record */ const void *pKey, /* The binary record */ char *pSpace, /* Unaligned space available to hold the object */ int szSpace /* Size of pSpace[] in bytes */ ){ const unsigned char *aKey = (const unsigned char *)pKey; UnpackedRecord *p; /* The unpacked record that we will return */ int nByte; /* Memory space needed to hold p, in bytes */ int d; u32 idx; u16 u; /* Unsigned loop counter */ u32 szHdr; Mem *pMem; int nOff; /* Increase pSpace by this much to 8-byte align it */ /* ** We want to shift the pointer pSpace up such that it is 8-byte aligned. ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift ** it by. If pSpace is already 8-byte aligned, nOff should be zero. */ nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7; pSpace += nOff; szSpace -= nOff; nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1); if( nByte>szSpace ){ p = sqlite3DbMallocRaw(pKeyInfo->db, nByte); if( p==0 ) return 0; p->flags = UNPACKED_NEED_FREE | UNPACKED_NEED_DESTROY; }else{ p = (UnpackedRecord*)pSpace; p->flags = UNPACKED_NEED_DESTROY; } p->pKeyInfo = pKeyInfo; p->nField = pKeyInfo->nField + 1; p->aMem = pMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; assert( EIGHT_BYTE_ALIGNMENT(pMem) ); idx = getVarint32(aKey, szHdr); d = szHdr; u = 0; while( idxnField && d<=nKey ){ u32 serial_type; idx += getVarint32(&aKey[idx], serial_type); pMem->enc = pKeyInfo->enc; pMem->db = pKeyInfo->db; pMem->flags = 0; pMem->zMalloc = 0; d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); pMem++; u++; } assert( u<=pKeyInfo->nField + 1 ); p->nField = u; return (void*)p; } /* ** This routine destroys a UnpackedRecord object. */ void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){ int i; Mem *pMem; assert( p!=0 ); assert( p->flags & UNPACKED_NEED_DESTROY ); for(i=0, pMem=p->aMem; inField; i++, pMem++){ /* The unpacked record is always constructed by the ** sqlite3VdbeUnpackRecord() function above, which makes all ** strings and blobs static. And none of the elements are ** ever transformed, so there is never anything to delete. */ if( NEVER(pMem->zMalloc) ) sqlite3VdbeMemRelease(pMem); } if( p->flags & UNPACKED_NEED_FREE ){ sqlite3DbFree(p->pKeyInfo->db, p); } } /* ** This function compares the two table rows or index records ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero ** or positive integer if key1 is less than, equal to or ** greater than key2. The {nKey1, pKey1} key must be a blob ** created by th OP_MakeRecord opcode of the VDBE. The pPKey2 ** key must be a parsed key such as obtained from ** sqlite3VdbeParseRecord. ** ** Key1 and Key2 do not have to contain the same number of fields. ** The key with fewer fields is usually compares less than the ** longer key. However if the UNPACKED_INCRKEY flags in pPKey2 is set ** and the common prefixes are equal, then key1 is less than key2. ** Or if the UNPACKED_MATCH_PREFIX flag is set and the prefixes are ** equal, then the keys are considered to be equal and ** the parts beyond the common prefix are ignored. ** ** If the UNPACKED_IGNORE_ROWID flag is set, then the last byte of ** the header of pKey1 is ignored. It is assumed that pKey1 is ** an index key, and thus ends with a rowid value. The last byte ** of the header will therefore be the serial type of the rowid: ** one of 1, 2, 3, 4, 5, 6, 8, or 9 - the integer serial types. ** The serial type of the final rowid will always be a single byte. ** By ignoring this last byte of the header, we force the comparison ** to ignore the rowid at the end of key1. */ int sqlite3VdbeRecordCompare( int nKey1, const void *pKey1, /* Left key */ UnpackedRecord *pPKey2 /* Right key */ ){ int d1; /* Offset into aKey[] of next data element */ u32 idx1; /* Offset into aKey[] of next header element */ u32 szHdr1; /* Number of bytes in header */ int i = 0; int nField; int rc = 0; const unsigned char *aKey1 = (const unsigned char *)pKey1; KeyInfo *pKeyInfo; Mem mem1; pKeyInfo = pPKey2->pKeyInfo; mem1.enc = pKeyInfo->enc; mem1.db = pKeyInfo->db; /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */ /* Compilers may complain that mem1.u.i is potentially uninitialized. ** We could initialize it, as shown here, to silence those complaints. ** But in fact, mem1.u.i will never actually be used initialized, and doing ** the unnecessary initialization has a measurable negative performance ** impact, since this routine is a very high runner. And so, we choose ** to ignore the compiler warnings and leave this variable uninitialized. */ /* mem1.u.i = 0; // not needed, here to silence compiler warning */ idx1 = getVarint32(aKey1, szHdr1); d1 = szHdr1; if( pPKey2->flags & UNPACKED_IGNORE_ROWID ){ szHdr1--; } nField = pKeyInfo->nField; while( idx1nField ){ u32 serial_type1; /* Read the serial types for the next element in each key. */ idx1 += getVarint32( aKey1+idx1, serial_type1 ); if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break; /* Extract the values to be compared. */ d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); /* Do the comparison */ rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], iaColl[i] : 0); if( rc!=0 ){ assert( mem1.zMalloc==0 ); /* See comment below */ /* Invert the result if we are using DESC sort order. */ if( pKeyInfo->aSortOrder && iaSortOrder[i] ){ rc = -rc; } /* If the PREFIX_SEARCH flag is set and all fields except the final ** rowid field were equal, then clear the PREFIX_SEARCH flag and set ** pPKey2->rowid to the value of the rowid field in (pKey1, nKey1). ** This is used by the OP_IsUnique opcode. */ if( (pPKey2->flags & UNPACKED_PREFIX_SEARCH) && i==(pPKey2->nField-1) ){ assert( idx1==szHdr1 && rc ); assert( mem1.flags & MEM_Int ); pPKey2->flags &= ~UNPACKED_PREFIX_SEARCH; pPKey2->rowid = mem1.u.i; } return rc; } i++; } /* No memory allocation is ever used on mem1. Prove this using ** the following assert(). If the assert() fails, it indicates a ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ assert( mem1.zMalloc==0 ); /* rc==0 here means that one of the keys ran out of fields and ** all the fields up to that point were equal. If the UNPACKED_INCRKEY ** flag is set, then break the tie by treating key2 as larger. ** If the UPACKED_PREFIX_MATCH flag is set, then keys with common prefixes ** are considered to be equal. Otherwise, the longer key is the ** larger. As it happens, the pPKey2 will always be the longer ** if there is a difference. */ assert( rc==0 ); if( pPKey2->flags & UNPACKED_INCRKEY ){ rc = -1; }else if( pPKey2->flags & UNPACKED_PREFIX_MATCH ){ /* Leave rc==0 */ }else if( idx1m.n) ){ goto idx_rowid_corruption; } /* The last field of the index should be an integer - the ROWID. ** Verify that the last entry really is an integer. */ (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); testcase( typeRowid==1 ); testcase( typeRowid==2 ); testcase( typeRowid==3 ); testcase( typeRowid==4 ); testcase( typeRowid==5 ); testcase( typeRowid==6 ); testcase( typeRowid==8 ); testcase( typeRowid==9 ); if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ goto idx_rowid_corruption; } lenRowid = sqlite3VdbeSerialTypeLen(typeRowid); testcase( (u32)m.n==szHdr+lenRowid ); if( unlikely((u32)m.npCursor; Mem m; assert( sqlite3BtreeCursorIsValid(pCur) ); rc = sqlite3BtreeKeySize(pCur, &nCellKey); assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ /* nCellKey will always be between 0 and 0xffffffff because of the say ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ if( nCellKey<=0 || nCellKey>0x7fffffff ){ *res = 0; return SQLITE_CORRUPT_BKPT; } memset(&m, 0, sizeof(m)); rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (int)nCellKey, 1, &m); if( rc ){ return rc; } assert( pUnpacked->flags & UNPACKED_IGNORE_ROWID ); *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked); sqlite3VdbeMemRelease(&m); return SQLITE_OK; } /* ** This routine sets the value to be returned by subsequent calls to ** sqlite3_changes() on the database handle 'db'. */ void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ assert( sqlite3_mutex_held(db->mutex) ); db->nChange = nChange; db->nTotalChange += nChange; } /* ** Set a flag in the vdbe to update the change counter when it is finalised ** or reset. */ void sqlite3VdbeCountChanges(Vdbe *v){ v->changeCntOn = 1; } /* ** Mark every prepared statement associated with a database connection ** as expired. ** ** An expired statement means that recompilation of the statement is ** recommend. Statements expire when things happen that make their ** programs obsolete. Removing user-defined functions or collating ** sequences, or changing an authorization function are the types of ** things that make prepared statements obsolete. */ void sqlite3ExpirePreparedStatements(sqlite3 *db){ Vdbe *p; for(p = db->pVdbe; p; p=p->pNext){ p->expired = 1; } } /* ** Return the database associated with the Vdbe. */ sqlite3 *sqlite3VdbeDb(Vdbe *v){ return v->db; } /* ** Return a pointer to an sqlite3_value structure containing the value bound ** parameter iVar of VM v. Except, if the value is an SQL NULL, return ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* ** constants) to the value before returning it. ** ** The returned value must be freed by the caller using sqlite3ValueFree(). */ sqlite3_value *sqlite3VdbeGetValue(Vdbe *v, int iVar, u8 aff){ assert( iVar>0 ); if( v ){ Mem *pMem = &v->aVar[iVar-1]; if( 0==(pMem->flags & MEM_Null) ){ sqlite3_value *pRet = sqlite3ValueNew(v->db); if( pRet ){ sqlite3VdbeMemCopy((Mem *)pRet, pMem); sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); sqlite3VdbeMemStoreType((Mem *)pRet); } return pRet; } } return 0; } /* ** Configure SQL variable iVar so that binding a new value to it signals ** to sqlite3_reoptimize() that re-preparing the statement may result ** in a better query plan. */ void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ assert( iVar>0 ); if( iVar>32 ){ v->expmask = 0xffffffff; }else{ v->expmask |= ((u32)1 << (iVar-1)); } }