// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_LDLT_H #define EIGEN_LDLT_H /** \ingroup cholesky_Module * * \class LDLT * * \brief Robust Cholesky decomposition of a matrix and associated features * * \param MatrixType the type of the matrix of which we are computing the LDL^T Cholesky decomposition * * This class performs a Cholesky decomposition without square root of a symmetric, positive definite * matrix A such that A = L D L^* = U^* D U, where L is lower triangular with a unit diagonal * and D is a diagonal matrix. * * Compared to a standard Cholesky decomposition, avoiding the square roots allows for faster and more * stable computation. * * Note that during the decomposition, only the upper triangular part of A is considered. Therefore, * the strict lower part does not have to store correct values. * * \sa MatrixBase::ldlt(), class LLT */ template class LDLT { public: typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix VectorType; LDLT(const MatrixType& matrix) : m_matrix(matrix.rows(), matrix.cols()) { compute(matrix); } /** \returns the lower triangular matrix L */ inline Part matrixL(void) const { return m_matrix; } /** \returns the coefficients of the diagonal matrix D */ inline DiagonalCoeffs vectorD(void) const { return m_matrix.diagonal(); } /** \returns true if the matrix is positive definite */ inline bool isPositiveDefinite(void) const { return m_isPositiveDefinite; } template bool solve(const MatrixBase &b, ResultType *result) const; template bool solveInPlace(MatrixBase &bAndX) const; void compute(const MatrixType& matrix); protected: /** \internal * Used to compute and store the cholesky decomposition A = L D L^* = U^* D U. * The strict upper part is used during the decomposition, the strict lower * part correspond to the coefficients of L (its diagonal is equal to 1 and * is not stored), and the diagonal entries correspond to D. */ MatrixType m_matrix; bool m_isPositiveDefinite; }; /** Compute / recompute the LLT decomposition A = L D L^* = U^* D U of \a matrix */ template void LDLT::compute(const MatrixType& a) { assert(a.rows()==a.cols()); const int size = a.rows(); m_matrix.resize(size, size); m_isPositiveDefinite = true; const RealScalar eps = ei_sqrt(precision()); if (size<=1) { m_matrix = a; return; } // Let's preallocate a temporay vector to evaluate the matrix-vector product into it. // Unlike the standard LLT decomposition, here we cannot evaluate it to the destination // matrix because it a sub-row which is not compatible suitable for efficient packet evaluation. // (at least if we assume the matrix is col-major) Matrix _temporary(size); // Note that, in this algorithm the rows of the strict upper part of m_matrix is used to store // column vector, thus the strange .conjugate() and .transpose()... m_matrix.row(0) = a.row(0).conjugate(); m_matrix.col(0).end(size-1) = m_matrix.row(0).end(size-1) / m_matrix.coeff(0,0); for (int j = 1; j < size; ++j) { RealScalar tmp = ei_real(a.coeff(j,j) - (m_matrix.row(j).start(j) * m_matrix.col(j).start(j).conjugate()).coeff(0,0)); m_matrix.coeffRef(j,j) = tmp; if (tmp < eps) { m_isPositiveDefinite = false; return; } int endSize = size-j-1; if (endSize>0) { _temporary.end(endSize) = ( m_matrix.block(j+1,0, endSize, j) * m_matrix.col(j).start(j).conjugate() ).lazy(); m_matrix.row(j).end(endSize) = a.row(j).end(endSize).conjugate() - _temporary.end(endSize).transpose(); m_matrix.col(j).end(endSize) = m_matrix.row(j).end(endSize) / tmp; } } } /** Computes the solution x of \f$ A x = b \f$ using the current decomposition of A. * The result is stored in \a result * * \returns true in case of success, false otherwise. * * In other words, it computes \f$ b = A^{-1} b \f$ with * \f$ {L^{*}}^{-1} D^{-1} L^{-1} b \f$ from right to left. * * \sa LDLT::solveInPlace(), MatrixBase::ldlt() */ template template bool LDLT ::solve(const MatrixBase &b, ResultType *result) const { const int size = m_matrix.rows(); ei_assert(size==b.rows() && "LLT::solve(): invalid number of rows of the right hand side matrix b"); *result = b; return solveInPlace(*result); } /** This is the \em in-place version of solve(). * * \param bAndX represents both the right-hand side matrix b and result x. * * This version avoids a copy when the right hand side matrix b is not * needed anymore. * * \sa LDLT::solve(), MatrixBase::ldlt() */ template template bool LDLT::solveInPlace(MatrixBase &bAndX) const { const int size = m_matrix.rows(); ei_assert(size==bAndX.rows()); if (!m_isPositiveDefinite) return false; matrixL().solveTriangularInPlace(bAndX); bAndX = (m_matrix.cwise().inverse().template part() * bAndX).lazy(); m_matrix.adjoint().template part().solveTriangularInPlace(bAndX); return true; } /** \cholesky_module * \returns the Cholesky decomposition without square root of \c *this */ template inline const LDLT::PlainMatrixType> MatrixBase::ldlt() const { return derived(); } #endif // EIGEN_LDLT_H