// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_EULERANGLES_H #define EIGEN_EULERANGLES_H /** \geometry_module \ingroup Geometry_Module * \nonstableyet * * \returns the Euler-angles of the rotation matrix \c *this using the convention defined by the triplet (\a a0,\a a1,\a a2) * * Each of the three parameters \a a0,\a a1,\a a2 represents the respective rotation axis as an integer in {0,1,2}. * For instance, in: * \code Vector3f ea = mat.eulerAngles(2, 0, 2); \endcode * "2" represents the z axis and "0" the x axis, etc. The returned angles are such that * we have the following equality: * \code * mat == AngleAxisf(ea[0], Vector3f::UnitZ()) * * AngleAxisf(ea[1], Vector3f::UnitX()) * * AngleAxisf(ea[2], Vector3f::UnitZ()); \endcode * This corresponds to the right-multiply conventions (with right hand side frames). */ template inline Matrix::Scalar,3,1> MatrixBase::eulerAngles(int a0, int a1, int a2) const { /* Implemented from Graphics Gems IV */ EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived,3,3) Matrix res; typedef Matrix Vector2; const Scalar epsilon = precision(); const int odd = ((a0+1)%3 == a1) ? 0 : 1; const int i = a0; const int j = (a0 + 1 + odd)%3; const int k = (a0 + 2 - odd)%3; if (a0==a2) { Scalar s = Vector2(coeff(j,i) , coeff(k,i)).norm(); res[1] = ei_atan2(s, coeff(i,i)); if (s > epsilon) { res[0] = ei_atan2(coeff(j,i), coeff(k,i)); res[2] = ei_atan2(coeff(i,j),-coeff(i,k)); } else { res[0] = Scalar(0); res[2] = (coeff(i,i)>0?1:-1)*ei_atan2(-coeff(k,j), coeff(j,j)); } } else { Scalar c = Vector2(coeff(i,i) , coeff(i,j)).norm(); res[1] = ei_atan2(-coeff(i,k), c); if (c > epsilon) { res[0] = ei_atan2(coeff(j,k), coeff(k,k)); res[2] = ei_atan2(coeff(i,j), coeff(i,i)); } else { res[0] = Scalar(0); res[2] = (coeff(i,k)>0?1:-1)*ei_atan2(-coeff(k,j), coeff(j,j)); } } if (!odd) res = -res; return res; } #endif // EIGEN_EULERANGLES_H