// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_TRIDIAGONALIZATION_H #define EIGEN_TRIDIAGONALIZATION_H /** \ingroup QR_Module * \nonstableyet * * \class Tridiagonalization * * \brief Trigiagonal decomposition of a selfadjoint matrix * * \param MatrixType the type of the matrix of which we are performing the tridiagonalization * * This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that: * \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix. * * \sa MatrixBase::tridiagonalize() */ template class Tridiagonalization { public: typedef _MatrixType MatrixType; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef typename ei_packet_traits::type Packet; enum { Size = MatrixType::RowsAtCompileTime, SizeMinusOne = MatrixType::RowsAtCompileTime==Dynamic ? Dynamic : MatrixType::RowsAtCompileTime-1, PacketSize = ei_packet_traits::size }; typedef Matrix CoeffVectorType; typedef Matrix DiagonalType; typedef Matrix SubDiagonalType; typedef typename NestByValue >::RealReturnType DiagonalReturnType; typedef typename NestByValue > > >::RealReturnType SubDiagonalReturnType; /** This constructor initializes a Tridiagonalization object for * further use with Tridiagonalization::compute() */ Tridiagonalization(int size = Size==Dynamic ? 2 : Size) : m_matrix(size,size), m_hCoeffs(size-1) {} Tridiagonalization(const MatrixType& matrix) : m_matrix(matrix), m_hCoeffs(matrix.cols()-1) { _compute(m_matrix, m_hCoeffs); } /** Computes or re-compute the tridiagonalization for the matrix \a matrix. * * This method allows to re-use the allocated data. */ void compute(const MatrixType& matrix) { m_matrix = matrix; m_hCoeffs.resize(matrix.rows()-1, 1); _compute(m_matrix, m_hCoeffs); } /** \returns the householder coefficients allowing to * reconstruct the matrix Q from the packed data. * * \sa packedMatrix() */ inline CoeffVectorType householderCoefficients(void) const { return m_hCoeffs; } /** \returns the internal result of the decomposition. * * The returned matrix contains the following information: * - the strict upper part is equal to the input matrix A * - the diagonal and lower sub-diagonal represent the tridiagonal symmetric matrix (real). * - the rest of the lower part contains the Householder vectors that, combined with * Householder coefficients returned by householderCoefficients(), * allows to reconstruct the matrix Q as follow: * Q = H_{N-1} ... H_1 H_0 * where the matrices H are the Householder transformations: * H_i = (I - h_i * v_i * v_i') * where h_i == householderCoefficients()[i] and v_i is a Householder vector: * v_i = [ 0, ..., 0, 1, M(i+2,i), ..., M(N-1,i) ] * * See LAPACK for further details on this packed storage. */ inline const MatrixType& packedMatrix(void) const { return m_matrix; } MatrixType matrixQ(void) const; MatrixType matrixT(void) const; const DiagonalReturnType diagonal(void) const; const SubDiagonalReturnType subDiagonal(void) const; static void decomposeInPlace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ = true); private: static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs); static void _decomposeInPlace3x3(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ = true); protected: MatrixType m_matrix; CoeffVectorType m_hCoeffs; }; /** \returns an expression of the diagonal vector */ template const typename Tridiagonalization::DiagonalReturnType Tridiagonalization::diagonal(void) const { return m_matrix.diagonal().nestByValue().real(); } /** \returns an expression of the sub-diagonal vector */ template const typename Tridiagonalization::SubDiagonalReturnType Tridiagonalization::subDiagonal(void) const { int n = m_matrix.rows(); return Block(m_matrix, 1, 0, n-1,n-1) .nestByValue().diagonal().nestByValue().real(); } /** constructs and returns the tridiagonal matrix T. * Note that the matrix T is equivalent to the diagonal and sub-diagonal of the packed matrix. * Therefore, it might be often sufficient to directly use the packed matrix, or the vector * expressions returned by diagonal() and subDiagonal() instead of creating a new matrix. */ template typename Tridiagonalization::MatrixType Tridiagonalization::matrixT(void) const { // FIXME should this function (and other similar ones) rather take a matrix as argument // and fill it ? (to avoid temporaries) int n = m_matrix.rows(); MatrixType matT = m_matrix; matT.corner(TopRight,n-1, n-1).diagonal() = subDiagonal().template cast().conjugate(); if (n>2) { matT.corner(TopRight,n-2, n-2).template part().setZero(); matT.corner(BottomLeft,n-2, n-2).template part().setZero(); } return matT; } #ifndef EIGEN_HIDE_HEAVY_CODE /** \internal * Performs a tridiagonal decomposition of \a matA in place. * * \param matA the input selfadjoint matrix * \param hCoeffs returned Householder coefficients * * The result is written in the lower triangular part of \a matA. * * Implemented from Golub's "Matrix Computations", algorithm 8.3.1. * * \sa packedMatrix() */ template void Tridiagonalization::_compute(MatrixType& matA, CoeffVectorType& hCoeffs) { assert(matA.rows()==matA.cols()); int n = matA.rows(); // std::cerr << matA << "\n\n"; for (int i = 0; i(1))) { hCoeffs.coeffRef(i) = 0.; } else { Scalar v0 = matA.col(i).coeff(i+1); RealScalar beta = ei_sqrt(ei_abs2(v0)+v1norm2); if (ei_real(v0)>=0.) beta = -beta; matA.col(i).end(n-(i+2)) *= (Scalar(1)/(v0-beta)); matA.col(i).coeffRef(i+1) = beta; Scalar h = (beta - v0) / beta; // end of the householder transformation // Apply similarity transformation to remaining columns, // i.e., A = H' A H where H = I - h v v' and v = matA.col(i).end(n-i-1) matA.col(i).coeffRef(i+1) = 1; /* This is the initial algorithm which minimize operation counts and maximize * the use of Eigen's expression. Unfortunately, the first matrix-vector product * using Part is very very slow */ #ifdef EIGEN_NEVER_DEFINED // matrix - vector product hCoeffs.end(n-i-1) = (matA.corner(BottomRight,n-i-1,n-i-1).template part() * (h * matA.col(i).end(n-i-1))).lazy(); // simple axpy hCoeffs.end(n-i-1) += (h * Scalar(-0.5) * matA.col(i).end(n-i-1).dot(hCoeffs.end(n-i-1))) * matA.col(i).end(n-i-1); // rank-2 update //Block B(matA,i+1,i,n-i-1,1); matA.corner(BottomRight,n-i-1,n-i-1).template part() -= (matA.col(i).end(n-i-1) * hCoeffs.end(n-i-1).adjoint()).lazy() + (hCoeffs.end(n-i-1) * matA.col(i).end(n-i-1).adjoint()).lazy(); #endif /* end initial algorithm */ /* If we still want to minimize operation count (i.e., perform operation on the lower part only) * then we could provide the following algorithm for selfadjoint - vector product. However, a full * matrix-vector product is still faster (at least for dynamic size, and not too small, did not check * small matrices). The algo performs block matrix-vector and transposed matrix vector products. */ #ifdef EIGEN_NEVER_DEFINED int n4 = (std::max(0,n-4)/4)*4; hCoeffs.end(n-i-1).setZero(); for (int b=i+1; b(matA,b+4,b,n-b-4,4) * matA.template block<4,1>(b,i); // the respective transposed part: Block(hCoeffs, b, 0, 4,1) += Block(matA,b+4,b,n-b-4,4).adjoint() * Block(matA,b+4,i,n-b-4,1); // the 4x4 block diagonal: Block(hCoeffs, b, 0, 4,1) += (Block(matA,b,b,4,4).template part() * (h * Block(matA,b,i,4,1))).lazy(); } #endif // todo: handle the remaining part /* end optimized selfadjoint - vector product */ /* Another interesting note: the above rank-2 update is much slower than the following hand written loop. * After an analyze of the ASM, it seems GCC (4.2) generate poor code because of the Block. Moreover, * if we remove the specialization of Block for Matrix then it is even worse, much worse ! */ #ifdef EIGEN_NEVER_DEFINED for (int j1=i+1; j11) { int alignedStart = (starti) + ei_alignmentOffset(&matA.coeffRef(starti,j1), n-starti); alignedEnd = alignedStart + ((n-alignedStart)/PacketSize)*PacketSize; for (int i1=starti; i1::IsComplex) { // Householder transformation on the remaining single scalar int i = n-2; Scalar v0 = matA.col(i).coeff(i+1); RealScalar beta = ei_abs(v0); if (ei_real(v0)>=0.) beta = -beta; matA.col(i).coeffRef(i+1) = beta; if(ei_isMuchSmallerThan(beta, Scalar(1))) hCoeffs.coeffRef(i) = Scalar(0); else hCoeffs.coeffRef(i) = (beta - v0) / beta; } else { hCoeffs.coeffRef(n-2) = 0; } } /** reconstructs and returns the matrix Q */ template typename Tridiagonalization::MatrixType Tridiagonalization::matrixQ(void) const { int n = m_matrix.rows(); MatrixType matQ = MatrixType::Identity(n,n); for (int i = n-2; i>=0; i--) { Scalar tmp = m_matrix.coeff(i+1,i); m_matrix.const_cast_derived().coeffRef(i+1,i) = 1; matQ.corner(BottomRight,n-i-1,n-i-1) -= ((m_hCoeffs.coeff(i) * m_matrix.col(i).end(n-i-1)) * (m_matrix.col(i).end(n-i-1).adjoint() * matQ.corner(BottomRight,n-i-1,n-i-1)).lazy()).lazy(); m_matrix.const_cast_derived().coeffRef(i+1,i) = tmp; } return matQ; } /** Performs a full decomposition in place */ template void Tridiagonalization::decomposeInPlace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ) { int n = mat.rows(); ei_assert(mat.cols()==n && diag.size()==n && subdiag.size()==n-1); if (n==3 && (!NumTraits::IsComplex) ) { _decomposeInPlace3x3(mat, diag, subdiag, extractQ); } else { Tridiagonalization tridiag(mat); diag = tridiag.diagonal(); subdiag = tridiag.subDiagonal(); if (extractQ) mat = tridiag.matrixQ(); } } /** \internal * Optimized path for 3x3 matrices. * Especially useful for plane fitting. */ template void Tridiagonalization::_decomposeInPlace3x3(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ) { diag[0] = ei_real(mat(0,0)); RealScalar v1norm2 = ei_abs2(mat(0,2)); if (ei_isMuchSmallerThan(v1norm2, RealScalar(1))) { diag[1] = ei_real(mat(1,1)); diag[2] = ei_real(mat(2,2)); subdiag[0] = ei_real(mat(0,1)); subdiag[1] = ei_real(mat(1,2)); if (extractQ) mat.setIdentity(); } else { RealScalar beta = ei_sqrt(ei_abs2(mat(0,1))+v1norm2); RealScalar invBeta = RealScalar(1)/beta; Scalar m01 = mat(0,1) * invBeta; Scalar m02 = mat(0,2) * invBeta; Scalar q = RealScalar(2)*m01*mat(1,2) + m02*(mat(2,2) - mat(1,1)); diag[1] = ei_real(mat(1,1) + m02*q); diag[2] = ei_real(mat(2,2) - m02*q); subdiag[0] = beta; subdiag[1] = ei_real(mat(1,2) - m01 * q); if (extractQ) { mat(0,0) = 1; mat(0,1) = 0; mat(0,2) = 0; mat(1,0) = 0; mat(1,1) = m01; mat(1,2) = m02; mat(2,0) = 0; mat(2,1) = m02; mat(2,2) = -m01; } } } #endif // EIGEN_HIDE_HEAVY_CODE #endif // EIGEN_TRIDIAGONALIZATION_H