// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud // Copyright (C) 2008 Daniel Gomez Ferro // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_SPARSE_BLOCK_H #define EIGEN_SPARSE_BLOCK_H template struct ei_traits > { typedef typename ei_traits::Scalar Scalar; enum { IsRowMajor = (int(MatrixType::Flags)&RowMajorBit)==RowMajorBit, Flags = MatrixType::Flags, RowsAtCompileTime = IsRowMajor ? Size : MatrixType::RowsAtCompileTime, ColsAtCompileTime = IsRowMajor ? MatrixType::ColsAtCompileTime : Size, CoeffReadCost = MatrixType::CoeffReadCost }; }; template class SparseInnerVectorSet : ei_no_assignment_operator, public SparseMatrixBase > { enum { IsRowMajor = ei_traits::IsRowMajor }; public: EIGEN_SPARSE_GENERIC_PUBLIC_INTERFACE(SparseInnerVectorSet) class InnerIterator: public MatrixType::InnerIterator { public: inline InnerIterator(const SparseInnerVectorSet& xpr, int outer) : MatrixType::InnerIterator(xpr.m_matrix, xpr.m_outerStart + outer) {} private: InnerIterator& operator=(const InnerIterator&); }; inline SparseInnerVectorSet(const MatrixType& matrix, int outerStart, int outerSize) : m_matrix(matrix), m_outerStart(outerStart), m_outerSize(outerSize) { ei_assert( (outerStart>=0) && ((outerStart+outerSize)<=matrix.outerSize()) ); } inline SparseInnerVectorSet(const MatrixType& matrix, int outer) : m_matrix(matrix), m_outerStart(outer), m_outerSize(Size) { ei_assert(Size!=Dynamic); ei_assert( (outer>=0) && (outer // inline SparseInnerVectorSet& operator=(const SparseMatrixBase& other) // { // return *this; // } // template // inline SparseInnerVectorSet& operator=(const SparseMatrixBase& other) // { // return *this; // } EIGEN_STRONG_INLINE int rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); } EIGEN_STRONG_INLINE int cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); } protected: const typename MatrixType::Nested m_matrix; int m_outerStart; const ei_int_if_dynamic m_outerSize; }; /*************************************************************************** * specialisation for DynamicSparseMatrix ***************************************************************************/ template class SparseInnerVectorSet, Size> : public SparseMatrixBase, Size> > { typedef DynamicSparseMatrix<_Scalar, _Options> MatrixType; enum { IsRowMajor = ei_traits::IsRowMajor }; public: EIGEN_SPARSE_GENERIC_PUBLIC_INTERFACE(SparseInnerVectorSet) class InnerIterator: public MatrixType::InnerIterator { public: inline InnerIterator(const SparseInnerVectorSet& xpr, int outer) : MatrixType::InnerIterator(xpr.m_matrix, xpr.m_outerStart + outer) {} private: InnerIterator& operator=(const InnerIterator&); }; inline SparseInnerVectorSet(const MatrixType& matrix, int outerStart, int outerSize) : m_matrix(matrix), m_outerStart(outerStart), m_outerSize(outerSize) { ei_assert( (outerStart>=0) && ((outerStart+outerSize)<=matrix.outerSize()) ); } inline SparseInnerVectorSet(const MatrixType& matrix, int outer) : m_matrix(matrix), m_outerStart(outer), m_outerSize(Size) { ei_assert(Size!=Dynamic); ei_assert( (outer>=0) && (outer inline SparseInnerVectorSet& operator=(const SparseMatrixBase& other) { if (IsRowMajor != ((OtherDerived::Flags&RowMajorBit)==RowMajorBit)) { // need to transpose => perform a block evaluation followed by a big swap DynamicSparseMatrix aux(other); *this = aux.markAsRValue(); } else { // evaluate/copy vector per vector for (int j=0; j aux(other.innerVector(j)); m_matrix.const_cast_derived()._data()[m_outerStart+j].swap(aux._data()); } } return *this; } inline SparseInnerVectorSet& operator=(const SparseInnerVectorSet& other) { return operator=(other); } // template // inline SparseInnerVectorSet& operator=(const SparseMatrixBase& other) // { // return *this; // } EIGEN_STRONG_INLINE int rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); } EIGEN_STRONG_INLINE int cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); } protected: const typename MatrixType::Nested m_matrix; int m_outerStart; const ei_int_if_dynamic m_outerSize; }; /*************************************************************************** * specialisation for SparseMatrix ***************************************************************************/ /* template class SparseInnerVectorSet, Size> : public SparseMatrixBase, Size> > { typedef DynamicSparseMatrix<_Scalar, _Options> MatrixType; enum { IsRowMajor = ei_traits::IsRowMajor }; public: EIGEN_SPARSE_GENERIC_PUBLIC_INTERFACE(SparseInnerVectorSet) class InnerIterator: public MatrixType::InnerIterator { public: inline InnerIterator(const SparseInnerVectorSet& xpr, int outer) : MatrixType::InnerIterator(xpr.m_matrix, xpr.m_outerStart + outer) {} }; inline SparseInnerVectorSet(const MatrixType& matrix, int outerStart, int outerSize) : m_matrix(matrix), m_outerStart(outerStart), m_outerSize(outerSize) { ei_assert( (outerStart>=0) && ((outerStart+outerSize)<=matrix.outerSize()) ); } inline SparseInnerVectorSet(const MatrixType& matrix, int outer) : m_matrix(matrix), m_outerStart(outer) { ei_assert(Size==1); ei_assert( (outer>=0) && (outer inline SparseInnerVectorSet& operator=(const SparseMatrixBase& other) { if (IsRowMajor != ((OtherDerived::Flags&RowMajorBit)==RowMajorBit)) { // need to transpose => perform a block evaluation followed by a big swap DynamicSparseMatrix aux(other); *this = aux.markAsRValue(); } else { // evaluate/copy vector per vector for (int j=0; j aux(other.innerVector(j)); m_matrix.const_cast_derived()._data()[m_outerStart+j].swap(aux._data()); } } return *this; } inline SparseInnerVectorSet& operator=(const SparseInnerVectorSet& other) { return operator=(other); } inline const Scalar* _valuePtr() const { return m_matrix._valuePtr() + m_matrix._outerIndexPtr()[m_outerStart]; } inline const int* _innerIndexPtr() const { return m_matrix._innerIndexPtr() + m_matrix._outerIndexPtr()[m_outerStart]; } inline const int* _outerIndexPtr() const { return m_matrix._outerIndexPtr() + m_outerStart; } // template // inline SparseInnerVectorSet& operator=(const SparseMatrixBase& other) // { // return *this; // } EIGEN_STRONG_INLINE int rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); } EIGEN_STRONG_INLINE int cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); } protected: const typename MatrixType::Nested m_matrix; int m_outerStart; const ei_int_if_dynamic m_outerSize; }; */ //---------- /** \returns the i-th row of the matrix \c *this. For row-major matrix only. */ template SparseInnerVectorSet SparseMatrixBase::row(int i) { EIGEN_STATIC_ASSERT(IsRowMajor,THIS_METHOD_IS_ONLY_FOR_ROW_MAJOR_MATRICES); return innerVector(i); } /** \returns the i-th row of the matrix \c *this. For row-major matrix only. * (read-only version) */ template const SparseInnerVectorSet SparseMatrixBase::row(int i) const { EIGEN_STATIC_ASSERT(IsRowMajor,THIS_METHOD_IS_ONLY_FOR_ROW_MAJOR_MATRICES); return innerVector(i); } /** \returns the i-th column of the matrix \c *this. For column-major matrix only. */ template SparseInnerVectorSet SparseMatrixBase::col(int i) { EIGEN_STATIC_ASSERT(!IsRowMajor,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); return innerVector(i); } /** \returns the i-th column of the matrix \c *this. For column-major matrix only. * (read-only version) */ template const SparseInnerVectorSet SparseMatrixBase::col(int i) const { EIGEN_STATIC_ASSERT(!IsRowMajor,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); return innerVector(i); } /** \returns the \a outer -th column (resp. row) of the matrix \c *this if \c *this * is col-major (resp. row-major). */ template SparseInnerVectorSet SparseMatrixBase::innerVector(int outer) { return SparseInnerVectorSet(derived(), outer); } /** \returns the \a outer -th column (resp. row) of the matrix \c *this if \c *this * is col-major (resp. row-major). Read-only. */ template const SparseInnerVectorSet SparseMatrixBase::innerVector(int outer) const { return SparseInnerVectorSet(derived(), outer); } //---------- /** \returns the i-th row of the matrix \c *this. For row-major matrix only. */ template SparseInnerVectorSet SparseMatrixBase::subrows(int start, int size) { EIGEN_STATIC_ASSERT(IsRowMajor,THIS_METHOD_IS_ONLY_FOR_ROW_MAJOR_MATRICES); return innerVectors(start, size); } /** \returns the i-th row of the matrix \c *this. For row-major matrix only. * (read-only version) */ template const SparseInnerVectorSet SparseMatrixBase::subrows(int start, int size) const { EIGEN_STATIC_ASSERT(IsRowMajor,THIS_METHOD_IS_ONLY_FOR_ROW_MAJOR_MATRICES); return innerVectors(start, size); } /** \returns the i-th column of the matrix \c *this. For column-major matrix only. */ template SparseInnerVectorSet SparseMatrixBase::subcols(int start, int size) { EIGEN_STATIC_ASSERT(!IsRowMajor,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); return innerVectors(start, size); } /** \returns the i-th column of the matrix \c *this. For column-major matrix only. * (read-only version) */ template const SparseInnerVectorSet SparseMatrixBase::subcols(int start, int size) const { EIGEN_STATIC_ASSERT(!IsRowMajor,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); return innerVectors(start, size); } /** \returns the \a outer -th column (resp. row) of the matrix \c *this if \c *this * is col-major (resp. row-major). */ template SparseInnerVectorSet SparseMatrixBase::innerVectors(int outerStart, int outerSize) { return SparseInnerVectorSet(derived(), outerStart, outerSize); } /** \returns the \a outer -th column (resp. row) of the matrix \c *this if \c *this * is col-major (resp. row-major). Read-only. */ template const SparseInnerVectorSet SparseMatrixBase::innerVectors(int outerStart, int outerSize) const { return SparseInnerVectorSet(derived(), outerStart, outerSize); } # if 0 template class Block : public SparseMatrixBase > { public: _EIGEN_GENERIC_PUBLIC_INTERFACE(Block, SparseMatrixBase) class InnerIterator; /** Column or Row constructor */ inline Block(const MatrixType& matrix, int i) : m_matrix(matrix), // It is a row if and only if BlockRows==1 and BlockCols==MatrixType::ColsAtCompileTime, // and it is a column if and only if BlockRows==MatrixType::RowsAtCompileTime and BlockCols==1, // all other cases are invalid. // The case a 1x1 matrix seems ambiguous, but the result is the same anyway. m_startRow( (BlockRows==1) && (BlockCols==MatrixType::ColsAtCompileTime) ? i : 0), m_startCol( (BlockRows==MatrixType::RowsAtCompileTime) && (BlockCols==1) ? i : 0), m_blockRows(matrix.rows()), // if it is a row, then m_blockRows has a fixed-size of 1, so no pb to try to overwrite it m_blockCols(matrix.cols()) // same for m_blockCols { ei_assert( (i>=0) && ( ((BlockRows==1) && (BlockCols==MatrixType::ColsAtCompileTime) && i= 0 && BlockRows >= 1 && startRow + BlockRows <= matrix.rows() && startCol >= 0 && BlockCols >= 1 && startCol + BlockCols <= matrix.cols()); } /** Dynamic-size constructor */ inline Block(const MatrixType& matrix, int startRow, int startCol, int blockRows, int blockCols) : m_matrix(matrix), m_startRow(startRow), m_startCol(startCol), m_blockRows(blockRows), m_blockCols(blockCols) { ei_assert((RowsAtCompileTime==Dynamic || RowsAtCompileTime==blockRows) && (ColsAtCompileTime==Dynamic || ColsAtCompileTime==blockCols)); ei_assert(startRow >= 0 && blockRows >= 1 && startRow + blockRows <= matrix.rows() && startCol >= 0 && blockCols >= 1 && startCol + blockCols <= matrix.cols()); } inline int rows() const { return m_blockRows.value(); } inline int cols() const { return m_blockCols.value(); } inline int stride(void) const { return m_matrix.stride(); } inline Scalar& coeffRef(int row, int col) { return m_matrix.const_cast_derived() .coeffRef(row + m_startRow.value(), col + m_startCol.value()); } inline const Scalar coeff(int row, int col) const { return m_matrix.coeff(row + m_startRow.value(), col + m_startCol.value()); } inline Scalar& coeffRef(int index) { return m_matrix.const_cast_derived() .coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index), m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0)); } inline const Scalar coeff(int index) const { return m_matrix .coeff(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index), m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0)); } protected: const typename MatrixType::Nested m_matrix; const ei_int_if_dynamic m_startRow; const ei_int_if_dynamic m_startCol; const ei_int_if_dynamic m_blockRows; const ei_int_if_dynamic m_blockCols; }; #endif #endif // EIGEN_SPARSE_BLOCK_H