/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include "btCollisionWorld.h" #include "btCollisionDispatcher.h" #include "BulletCollision/CollisionDispatch/btCollisionObject.h" #include "BulletCollision/CollisionShapes/btCollisionShape.h" #include "BulletCollision/CollisionShapes/btConvexShape.h" #include "BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h" #include "BulletCollision/CollisionShapes/btSphereShape.h" //for raycasting #include "BulletCollision/CollisionShapes/btBvhTriangleMeshShape.h" //for raycasting #include "BulletCollision/NarrowPhaseCollision/btRaycastCallback.h" #include "BulletCollision/CollisionShapes/btCompoundShape.h" #include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h" #include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h" #include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h" #include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h" #include "LinearMath/btAabbUtil2.h" #include "LinearMath/btQuickprof.h" #include "LinearMath/btStackAlloc.h" #include "BulletSoftBody/btSoftBody.h" //#define USE_BRUTEFORCE_RAYBROADPHASE 1 //RECALCULATE_AABB is slower, but benefit is that you don't need to call 'stepSimulation' or 'updateAabbs' before using a rayTest //#define RECALCULATE_AABB_RAYCAST 1 //When the user doesn't provide dispatcher or broadphase, create basic versions (and delete them in destructor) #include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h" #include "BulletCollision/BroadphaseCollision/btSimpleBroadphase.h" #include "BulletCollision/CollisionDispatch/btCollisionConfiguration.h" btCollisionWorld::btCollisionWorld(btDispatcher* dispatcher,btBroadphaseInterface* pairCache, btCollisionConfiguration* collisionConfiguration) :m_dispatcher1(dispatcher), m_broadphasePairCache(pairCache), m_debugDrawer(0) { m_stackAlloc = collisionConfiguration->getStackAllocator(); m_dispatchInfo.m_stackAllocator = m_stackAlloc; } btCollisionWorld::~btCollisionWorld() { //clean up remaining objects int i; for (i=0;igetBroadphaseHandle(); if (bp) { // // only clear the cached algorithms // getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(bp,m_dispatcher1); getBroadphase()->destroyProxy(bp,m_dispatcher1); collisionObject->setBroadphaseHandle(0); } } } void btCollisionWorld::addCollisionObject(btCollisionObject* collisionObject,short int collisionFilterGroup,short int collisionFilterMask) { //check that the object isn't already added btAssert( m_collisionObjects.findLinearSearch(collisionObject) == m_collisionObjects.size()); m_collisionObjects.push_back(collisionObject); //calculate new AABB btTransform trans = collisionObject->getWorldTransform(); btVector3 minAabb; btVector3 maxAabb; collisionObject->getCollisionShape()->getAabb(trans,minAabb,maxAabb); int type = collisionObject->getCollisionShape()->getShapeType(); collisionObject->setBroadphaseHandle( getBroadphase()->createProxy( minAabb, maxAabb, type, collisionObject, collisionFilterGroup, collisionFilterMask, m_dispatcher1,0 )) ; } void btCollisionWorld::updateSingleAabb(btCollisionObject* colObj) { btVector3 minAabb,maxAabb; colObj->getCollisionShape()->getAabb(colObj->getWorldTransform(), minAabb,maxAabb); //need to increase the aabb for contact thresholds btVector3 contactThreshold(gContactBreakingThreshold,gContactBreakingThreshold,gContactBreakingThreshold); minAabb -= contactThreshold; maxAabb += contactThreshold; btBroadphaseInterface* bp = (btBroadphaseInterface*)m_broadphasePairCache; //moving objects should be moderately sized, probably something wrong if not if ( colObj->isStaticObject() || ((maxAabb-minAabb).length2() < btScalar(1e12))) { bp->setAabb(colObj->getBroadphaseHandle(),minAabb,maxAabb, m_dispatcher1); } else { //something went wrong, investigate //this assert is unwanted in 3D modelers (danger of loosing work) colObj->setActivationState(DISABLE_SIMULATION); static bool reportMe = true; if (reportMe && m_debugDrawer) { reportMe = false; m_debugDrawer->reportErrorWarning("Overflow in AABB, object removed from simulation"); m_debugDrawer->reportErrorWarning("If you can reproduce this, please email bugs@continuousphysics.com\n"); m_debugDrawer->reportErrorWarning("Please include above information, your Platform, version of OS.\n"); m_debugDrawer->reportErrorWarning("Thanks.\n"); } } } void btCollisionWorld::updateAabbs() { BT_PROFILE("updateAabbs"); btTransform predictedTrans; for ( int i=0;iisActive()) { updateSingleAabb(colObj); } } } void btCollisionWorld::performDiscreteCollisionDetection() { BT_PROFILE("performDiscreteCollisionDetection"); btDispatcherInfo& dispatchInfo = getDispatchInfo(); updateAabbs(); { BT_PROFILE("calculateOverlappingPairs"); m_broadphasePairCache->calculateOverlappingPairs(m_dispatcher1); } btDispatcher* dispatcher = getDispatcher(); { BT_PROFILE("dispatchAllCollisionPairs"); if (dispatcher) dispatcher->dispatchAllCollisionPairs(m_broadphasePairCache->getOverlappingPairCache(),dispatchInfo,m_dispatcher1); } } void btCollisionWorld::removeCollisionObject(btCollisionObject* collisionObject) { //bool removeFromBroadphase = false; { btBroadphaseProxy* bp = collisionObject->getBroadphaseHandle(); if (bp) { // // only clear the cached algorithms // getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(bp,m_dispatcher1); getBroadphase()->destroyProxy(bp,m_dispatcher1); collisionObject->setBroadphaseHandle(0); } } //swapremove m_collisionObjects.remove(collisionObject); } void btCollisionWorld::rayTestSingle(const btTransform& rayFromTrans,const btTransform& rayToTrans, btCollisionObject* collisionObject, const btCollisionShape* collisionShape, const btTransform& colObjWorldTransform, RayResultCallback& resultCallback) { btSphereShape pointShape(btScalar(0.0)); pointShape.setMargin(0.f); const btConvexShape* castShape = &pointShape; if (collisionShape->isConvex()) { // BT_PROFILE("rayTestConvex"); btConvexCast::CastResult castResult; castResult.m_fraction = resultCallback.m_closestHitFraction; btConvexShape* convexShape = (btConvexShape*) collisionShape; btVoronoiSimplexSolver simplexSolver; #define USE_SUBSIMPLEX_CONVEX_CAST 1 #ifdef USE_SUBSIMPLEX_CONVEX_CAST btSubsimplexConvexCast convexCaster(castShape,convexShape,&simplexSolver); #else //btGjkConvexCast convexCaster(castShape,convexShape,&simplexSolver); //btContinuousConvexCollision convexCaster(castShape,convexShape,&simplexSolver,0); #endif //#USE_SUBSIMPLEX_CONVEX_CAST if (convexCaster.calcTimeOfImpact(rayFromTrans,rayToTrans,colObjWorldTransform,colObjWorldTransform,castResult)) { //add hit if (castResult.m_normal.length2() > btScalar(0.0001)) { if (castResult.m_fraction < resultCallback.m_closestHitFraction) { #ifdef USE_SUBSIMPLEX_CONVEX_CAST //rotate normal into worldspace castResult.m_normal = rayFromTrans.getBasis() * castResult.m_normal; #endif //USE_SUBSIMPLEX_CONVEX_CAST castResult.m_normal.normalize(); btCollisionWorld::LocalRayResult localRayResult ( collisionObject, 0, castResult.m_normal, castResult.m_fraction ); bool normalInWorldSpace = true; resultCallback.addSingleResult(localRayResult, normalInWorldSpace); } } } } else { if (collisionShape->isConcave()) { // BT_PROFILE("rayTestConcave"); if (collisionShape->getShapeType()==TRIANGLE_MESH_SHAPE_PROXYTYPE) { ///optimized version for btBvhTriangleMeshShape btBvhTriangleMeshShape* triangleMesh = (btBvhTriangleMeshShape*)collisionShape; btTransform worldTocollisionObject = colObjWorldTransform.inverse(); btVector3 rayFromLocal = worldTocollisionObject * rayFromTrans.getOrigin(); btVector3 rayToLocal = worldTocollisionObject * rayToTrans.getOrigin(); //ConvexCast::CastResult struct BridgeTriangleRaycastCallback : public btTriangleRaycastCallback { btCollisionWorld::RayResultCallback* m_resultCallback; btCollisionObject* m_collisionObject; btTriangleMeshShape* m_triangleMesh; BridgeTriangleRaycastCallback( const btVector3& from,const btVector3& to, btCollisionWorld::RayResultCallback* resultCallback, btCollisionObject* collisionObject,btTriangleMeshShape* triangleMesh): //@BP Mod btTriangleRaycastCallback(from,to, resultCallback->m_flags), m_resultCallback(resultCallback), m_collisionObject(collisionObject), m_triangleMesh(triangleMesh) { } virtual btScalar reportHit(const btVector3& hitNormalLocal, btScalar hitFraction, int partId, int triangleIndex ) { btCollisionWorld::LocalShapeInfo shapeInfo; shapeInfo.m_shapePart = partId; shapeInfo.m_triangleIndex = triangleIndex; btCollisionWorld::LocalRayResult rayResult (m_collisionObject, &shapeInfo, hitNormalLocal, hitFraction); bool normalInWorldSpace = false; return m_resultCallback->addSingleResult(rayResult,normalInWorldSpace); } }; BridgeTriangleRaycastCallback rcb(rayFromLocal,rayToLocal,&resultCallback,collisionObject,triangleMesh); rcb.m_hitFraction = resultCallback.m_closestHitFraction; triangleMesh->performRaycast(&rcb,rayFromLocal,rayToLocal); } else { //generic (slower) case btConcaveShape* concaveShape = (btConcaveShape*)collisionShape; btTransform worldTocollisionObject = colObjWorldTransform.inverse(); btVector3 rayFromLocal = worldTocollisionObject * rayFromTrans.getOrigin(); btVector3 rayToLocal = worldTocollisionObject * rayToTrans.getOrigin(); //ConvexCast::CastResult struct BridgeTriangleRaycastCallback : public btTriangleRaycastCallback { btCollisionWorld::RayResultCallback* m_resultCallback; btCollisionObject* m_collisionObject; btConcaveShape* m_triangleMesh; BridgeTriangleRaycastCallback( const btVector3& from,const btVector3& to, btCollisionWorld::RayResultCallback* resultCallback, btCollisionObject* collisionObject,btConcaveShape* triangleMesh): //@BP Mod btTriangleRaycastCallback(from,to, resultCallback->m_flags), m_resultCallback(resultCallback), m_collisionObject(collisionObject), m_triangleMesh(triangleMesh) { } virtual btScalar reportHit(const btVector3& hitNormalLocal, btScalar hitFraction, int partId, int triangleIndex ) { btCollisionWorld::LocalShapeInfo shapeInfo; shapeInfo.m_shapePart = partId; shapeInfo.m_triangleIndex = triangleIndex; btCollisionWorld::LocalRayResult rayResult (m_collisionObject, &shapeInfo, hitNormalLocal, hitFraction); bool normalInWorldSpace = false; return m_resultCallback->addSingleResult(rayResult,normalInWorldSpace); } }; BridgeTriangleRaycastCallback rcb(rayFromLocal,rayToLocal,&resultCallback,collisionObject,concaveShape); rcb.m_hitFraction = resultCallback.m_closestHitFraction; btVector3 rayAabbMinLocal = rayFromLocal; rayAabbMinLocal.setMin(rayToLocal); btVector3 rayAabbMaxLocal = rayFromLocal; rayAabbMaxLocal.setMax(rayToLocal); concaveShape->processAllTriangles(&rcb,rayAabbMinLocal,rayAabbMaxLocal); } } else { // BT_PROFILE("rayTestCompound"); ///@todo: use AABB tree or other BVH acceleration structure, see btDbvt if (collisionShape->isCompound()) { const btCompoundShape* compoundShape = static_cast(collisionShape); int i=0; for (i=0;igetNumChildShapes();i++) { btTransform childTrans = compoundShape->getChildTransform(i); const btCollisionShape* childCollisionShape = compoundShape->getChildShape(i); btTransform childWorldTrans = colObjWorldTransform * childTrans; // replace collision shape so that callback can determine the triangle btCollisionShape* saveCollisionShape = collisionObject->getCollisionShape(); collisionObject->internalSetTemporaryCollisionShape((btCollisionShape*)childCollisionShape); rayTestSingle(rayFromTrans,rayToTrans, collisionObject, childCollisionShape, childWorldTrans, resultCallback); // restore collisionObject->internalSetTemporaryCollisionShape(saveCollisionShape); } } } } } void btCollisionWorld::objectQuerySingle(const btConvexShape* castShape,const btTransform& convexFromTrans,const btTransform& convexToTrans, btCollisionObject* collisionObject, const btCollisionShape* collisionShape, const btTransform& colObjWorldTransform, ConvexResultCallback& resultCallback, btScalar allowedPenetration) { if (collisionShape->isConvex()) { //BT_PROFILE("convexSweepConvex"); btConvexCast::CastResult castResult; castResult.m_allowedPenetration = allowedPenetration; castResult.m_fraction = resultCallback.m_closestHitFraction;//btScalar(1.);//?? btConvexShape* convexShape = (btConvexShape*) collisionShape; btVoronoiSimplexSolver simplexSolver; btGjkEpaPenetrationDepthSolver gjkEpaPenetrationSolver; btContinuousConvexCollision convexCaster1(castShape,convexShape,&simplexSolver,&gjkEpaPenetrationSolver); //btGjkConvexCast convexCaster2(castShape,convexShape,&simplexSolver); //btSubsimplexConvexCast convexCaster3(castShape,convexShape,&simplexSolver); btConvexCast* castPtr = &convexCaster1; if (castPtr->calcTimeOfImpact(convexFromTrans,convexToTrans,colObjWorldTransform,colObjWorldTransform,castResult)) { //add hit if (castResult.m_normal.length2() > btScalar(0.0001)) { if (castResult.m_fraction < resultCallback.m_closestHitFraction) { castResult.m_normal.normalize(); btCollisionWorld::LocalConvexResult localConvexResult ( collisionObject, 0, castResult.m_normal, castResult.m_hitPoint, castResult.m_fraction ); bool normalInWorldSpace = true; resultCallback.addSingleResult(localConvexResult, normalInWorldSpace); } } } } else { if (collisionShape->isConcave()) { if (collisionShape->getShapeType()==TRIANGLE_MESH_SHAPE_PROXYTYPE) { //BT_PROFILE("convexSweepbtBvhTriangleMesh"); btBvhTriangleMeshShape* triangleMesh = (btBvhTriangleMeshShape*)collisionShape; btTransform worldTocollisionObject = colObjWorldTransform.inverse(); btVector3 convexFromLocal = worldTocollisionObject * convexFromTrans.getOrigin(); btVector3 convexToLocal = worldTocollisionObject * convexToTrans.getOrigin(); // rotation of box in local mesh space = MeshRotation^-1 * ConvexToRotation btTransform rotationXform = btTransform(worldTocollisionObject.getBasis() * convexToTrans.getBasis()); //ConvexCast::CastResult struct BridgeTriangleConvexcastCallback : public btTriangleConvexcastCallback { btCollisionWorld::ConvexResultCallback* m_resultCallback; btCollisionObject* m_collisionObject; btTriangleMeshShape* m_triangleMesh; BridgeTriangleConvexcastCallback(const btConvexShape* castShape, const btTransform& from,const btTransform& to, btCollisionWorld::ConvexResultCallback* resultCallback, btCollisionObject* collisionObject,btTriangleMeshShape* triangleMesh, const btTransform& triangleToWorld): btTriangleConvexcastCallback(castShape, from,to, triangleToWorld, triangleMesh->getMargin()), m_resultCallback(resultCallback), m_collisionObject(collisionObject), m_triangleMesh(triangleMesh) { } virtual btScalar reportHit(const btVector3& hitNormalLocal, const btVector3& hitPointLocal, btScalar hitFraction, int partId, int triangleIndex ) { btCollisionWorld::LocalShapeInfo shapeInfo; shapeInfo.m_shapePart = partId; shapeInfo.m_triangleIndex = triangleIndex; if (hitFraction <= m_resultCallback->m_closestHitFraction) { btCollisionWorld::LocalConvexResult convexResult (m_collisionObject, &shapeInfo, hitNormalLocal, hitPointLocal, hitFraction); bool normalInWorldSpace = true; return m_resultCallback->addSingleResult(convexResult,normalInWorldSpace); } return hitFraction; } }; BridgeTriangleConvexcastCallback tccb(castShape, convexFromTrans,convexToTrans,&resultCallback,collisionObject,triangleMesh, colObjWorldTransform); tccb.m_hitFraction = resultCallback.m_closestHitFraction; btVector3 boxMinLocal, boxMaxLocal; castShape->getAabb(rotationXform, boxMinLocal, boxMaxLocal); triangleMesh->performConvexcast(&tccb,convexFromLocal,convexToLocal,boxMinLocal, boxMaxLocal); } else { //BT_PROFILE("convexSweepConcave"); btConcaveShape* concaveShape = (btConcaveShape*)collisionShape; btTransform worldTocollisionObject = colObjWorldTransform.inverse(); btVector3 convexFromLocal = worldTocollisionObject * convexFromTrans.getOrigin(); btVector3 convexToLocal = worldTocollisionObject * convexToTrans.getOrigin(); // rotation of box in local mesh space = MeshRotation^-1 * ConvexToRotation btTransform rotationXform = btTransform(worldTocollisionObject.getBasis() * convexToTrans.getBasis()); //ConvexCast::CastResult struct BridgeTriangleConvexcastCallback : public btTriangleConvexcastCallback { btCollisionWorld::ConvexResultCallback* m_resultCallback; btCollisionObject* m_collisionObject; btConcaveShape* m_triangleMesh; BridgeTriangleConvexcastCallback(const btConvexShape* castShape, const btTransform& from,const btTransform& to, btCollisionWorld::ConvexResultCallback* resultCallback, btCollisionObject* collisionObject,btConcaveShape* triangleMesh, const btTransform& triangleToWorld): btTriangleConvexcastCallback(castShape, from,to, triangleToWorld, triangleMesh->getMargin()), m_resultCallback(resultCallback), m_collisionObject(collisionObject), m_triangleMesh(triangleMesh) { } virtual btScalar reportHit(const btVector3& hitNormalLocal, const btVector3& hitPointLocal, btScalar hitFraction, int partId, int triangleIndex ) { btCollisionWorld::LocalShapeInfo shapeInfo; shapeInfo.m_shapePart = partId; shapeInfo.m_triangleIndex = triangleIndex; if (hitFraction <= m_resultCallback->m_closestHitFraction) { btCollisionWorld::LocalConvexResult convexResult (m_collisionObject, &shapeInfo, hitNormalLocal, hitPointLocal, hitFraction); bool normalInWorldSpace = false; return m_resultCallback->addSingleResult(convexResult,normalInWorldSpace); } return hitFraction; } }; BridgeTriangleConvexcastCallback tccb(castShape, convexFromTrans,convexToTrans,&resultCallback,collisionObject,concaveShape, colObjWorldTransform); tccb.m_hitFraction = resultCallback.m_closestHitFraction; btVector3 boxMinLocal, boxMaxLocal; castShape->getAabb(rotationXform, boxMinLocal, boxMaxLocal); btVector3 rayAabbMinLocal = convexFromLocal; rayAabbMinLocal.setMin(convexToLocal); btVector3 rayAabbMaxLocal = convexFromLocal; rayAabbMaxLocal.setMax(convexToLocal); rayAabbMinLocal += boxMinLocal; rayAabbMaxLocal += boxMaxLocal; concaveShape->processAllTriangles(&tccb,rayAabbMinLocal,rayAabbMaxLocal); } } else { ///@todo : use AABB tree or other BVH acceleration structure! if (collisionShape->isCompound()) { BT_PROFILE("convexSweepCompound"); const btCompoundShape* compoundShape = static_cast(collisionShape); int i=0; for (i=0;igetNumChildShapes();i++) { btTransform childTrans = compoundShape->getChildTransform(i); const btCollisionShape* childCollisionShape = compoundShape->getChildShape(i); btTransform childWorldTrans = colObjWorldTransform * childTrans; // replace collision shape so that callback can determine the triangle btCollisionShape* saveCollisionShape = collisionObject->getCollisionShape(); collisionObject->internalSetTemporaryCollisionShape((btCollisionShape*)childCollisionShape); objectQuerySingle(castShape, convexFromTrans,convexToTrans, collisionObject, childCollisionShape, childWorldTrans, resultCallback, allowedPenetration); // restore collisionObject->internalSetTemporaryCollisionShape(saveCollisionShape); } } } } } struct btSingleRayCallback : public btBroadphaseRayCallback { btVector3 m_rayFromWorld; btVector3 m_rayToWorld; btTransform m_rayFromTrans; btTransform m_rayToTrans; btVector3 m_hitNormal; const btCollisionWorld* m_world; btCollisionWorld::RayResultCallback& m_resultCallback; btSingleRayCallback(const btVector3& rayFromWorld,const btVector3& rayToWorld,const btCollisionWorld* world,btCollisionWorld::RayResultCallback& resultCallback) :m_rayFromWorld(rayFromWorld), m_rayToWorld(rayToWorld), m_world(world), m_resultCallback(resultCallback) { m_rayFromTrans.setIdentity(); m_rayFromTrans.setOrigin(m_rayFromWorld); m_rayToTrans.setIdentity(); m_rayToTrans.setOrigin(m_rayToWorld); btVector3 rayDir = (rayToWorld-rayFromWorld); rayDir.normalize (); ///what about division by zero? --> just set rayDirection[i] to INF/1e30 m_rayDirectionInverse[0] = rayDir[0] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDir[0]; m_rayDirectionInverse[1] = rayDir[1] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDir[1]; m_rayDirectionInverse[2] = rayDir[2] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDir[2]; m_signs[0] = m_rayDirectionInverse[0] < 0.0; m_signs[1] = m_rayDirectionInverse[1] < 0.0; m_signs[2] = m_rayDirectionInverse[2] < 0.0; m_lambda_max = rayDir.dot(m_rayToWorld-m_rayFromWorld); } virtual bool process(const btBroadphaseProxy* proxy) { ///terminate further ray tests, once the closestHitFraction reached zero if (m_resultCallback.m_closestHitFraction == btScalar(0.f)) return false; btCollisionObject* collisionObject = (btCollisionObject*)proxy->m_clientObject; //only perform raycast if filterMask matches if(m_resultCallback.needsCollision(collisionObject->getBroadphaseHandle())) { //RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject(); //btVector3 collisionObjectAabbMin,collisionObjectAabbMax; #if 0 #ifdef RECALCULATE_AABB btVector3 collisionObjectAabbMin,collisionObjectAabbMax; collisionObject->getCollisionShape()->getAabb(collisionObject->getWorldTransform(),collisionObjectAabbMin,collisionObjectAabbMax); #else //getBroadphase()->getAabb(collisionObject->getBroadphaseHandle(),collisionObjectAabbMin,collisionObjectAabbMax); const btVector3& collisionObjectAabbMin = collisionObject->getBroadphaseHandle()->m_aabbMin; const btVector3& collisionObjectAabbMax = collisionObject->getBroadphaseHandle()->m_aabbMax; #endif #endif //btScalar hitLambda = m_resultCallback.m_closestHitFraction; //culling already done by broadphase //if (btRayAabb(m_rayFromWorld,m_rayToWorld,collisionObjectAabbMin,collisionObjectAabbMax,hitLambda,m_hitNormal)) { m_world->rayTestSingle(m_rayFromTrans,m_rayToTrans, collisionObject, collisionObject->getCollisionShape(), collisionObject->getWorldTransform(), m_resultCallback); } } return true; } }; void btCollisionWorld::rayTest(const btVector3& rayFromWorld, const btVector3& rayToWorld, RayResultCallback& resultCallback) const { BT_PROFILE("rayTest"); /// use the broadphase to accelerate the search for objects, based on their aabb /// and for each object with ray-aabb overlap, perform an exact ray test btSingleRayCallback rayCB(rayFromWorld,rayToWorld,this,resultCallback); #ifndef USE_BRUTEFORCE_RAYBROADPHASE m_broadphasePairCache->rayTest(rayFromWorld,rayToWorld,rayCB); #else for (int i=0;igetNumCollisionObjects();i++) { rayCB.process(m_collisionObjects[i]->getBroadphaseHandle()); } #endif //USE_BRUTEFORCE_RAYBROADPHASE } struct btSingleSweepCallback : public btBroadphaseRayCallback { btTransform m_convexFromTrans; btTransform m_convexToTrans; btVector3 m_hitNormal; const btCollisionWorld* m_world; btCollisionWorld::ConvexResultCallback& m_resultCallback; btScalar m_allowedCcdPenetration; const btConvexShape* m_castShape; btSingleSweepCallback(const btConvexShape* castShape, const btTransform& convexFromTrans,const btTransform& convexToTrans,const btCollisionWorld* world,btCollisionWorld::ConvexResultCallback& resultCallback,btScalar allowedPenetration) :m_convexFromTrans(convexFromTrans), m_convexToTrans(convexToTrans), m_world(world), m_resultCallback(resultCallback), m_allowedCcdPenetration(allowedPenetration), m_castShape(castShape) { btVector3 unnormalizedRayDir = (m_convexToTrans.getOrigin()-m_convexFromTrans.getOrigin()); btVector3 rayDir = unnormalizedRayDir.normalized(); ///what about division by zero? --> just set rayDirection[i] to INF/1e30 m_rayDirectionInverse[0] = rayDir[0] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDir[0]; m_rayDirectionInverse[1] = rayDir[1] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDir[1]; m_rayDirectionInverse[2] = rayDir[2] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDir[2]; m_signs[0] = m_rayDirectionInverse[0] < 0.0; m_signs[1] = m_rayDirectionInverse[1] < 0.0; m_signs[2] = m_rayDirectionInverse[2] < 0.0; m_lambda_max = rayDir.dot(unnormalizedRayDir); } virtual bool process(const btBroadphaseProxy* proxy) { ///terminate further convex sweep tests, once the closestHitFraction reached zero if (m_resultCallback.m_closestHitFraction == btScalar(0.f)) return false; btCollisionObject* collisionObject = (btCollisionObject*)proxy->m_clientObject; //only perform raycast if filterMask matches if(m_resultCallback.needsCollision(collisionObject->getBroadphaseHandle())) { //RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject(); m_world->objectQuerySingle(m_castShape, m_convexFromTrans,m_convexToTrans, collisionObject, collisionObject->getCollisionShape(), collisionObject->getWorldTransform(), m_resultCallback, m_allowedCcdPenetration); } return true; } }; void btCollisionWorld::convexSweepTest(const btConvexShape* castShape, const btTransform& convexFromWorld, const btTransform& convexToWorld, ConvexResultCallback& resultCallback, btScalar allowedCcdPenetration) const { BT_PROFILE("convexSweepTest"); /// use the broadphase to accelerate the search for objects, based on their aabb /// and for each object with ray-aabb overlap, perform an exact ray test /// unfortunately the implementation for rayTest and convexSweepTest duplicated, albeit practically identical btTransform convexFromTrans,convexToTrans; convexFromTrans = convexFromWorld; convexToTrans = convexToWorld; btVector3 castShapeAabbMin, castShapeAabbMax; /* Compute AABB that encompasses angular movement */ { btVector3 linVel, angVel; btTransformUtil::calculateVelocity (convexFromTrans, convexToTrans, 1.0, linVel, angVel); btVector3 zeroLinVel; zeroLinVel.setValue(0,0,0); btTransform R; R.setIdentity (); R.setRotation (convexFromTrans.getRotation()); castShape->calculateTemporalAabb (R, zeroLinVel, angVel, 1.0, castShapeAabbMin, castShapeAabbMax); } #ifndef USE_BRUTEFORCE_RAYBROADPHASE btSingleSweepCallback convexCB(castShape,convexFromWorld,convexToWorld,this,resultCallback,allowedCcdPenetration); m_broadphasePairCache->rayTest(convexFromTrans.getOrigin(),convexToTrans.getOrigin(),convexCB,castShapeAabbMin,castShapeAabbMax); #else /// go over all objects, and if the ray intersects their aabb + cast shape aabb, // do a ray-shape query using convexCaster (CCD) int i; for (i=0;igetBroadphaseHandle())) { //RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject(); btVector3 collisionObjectAabbMin,collisionObjectAabbMax; collisionObject->getCollisionShape()->getAabb(collisionObject->getWorldTransform(),collisionObjectAabbMin,collisionObjectAabbMax); AabbExpand (collisionObjectAabbMin, collisionObjectAabbMax, castShapeAabbMin, castShapeAabbMax); btScalar hitLambda = btScalar(1.); //could use resultCallback.m_closestHitFraction, but needs testing btVector3 hitNormal; if (btRayAabb(convexFromWorld.getOrigin(),convexToWorld.getOrigin(),collisionObjectAabbMin,collisionObjectAabbMax,hitLambda,hitNormal)) { objectQuerySingle(castShape, convexFromTrans,convexToTrans, collisionObject, collisionObject->getCollisionShape(), collisionObject->getWorldTransform(), resultCallback, allowedCcdPenetration); } } } #endif //USE_BRUTEFORCE_RAYBROADPHASE }