/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://bulletphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ /** * @mainpage Bullet Documentation * * @section intro_sec Introduction * Bullet Collision Detection & Physics SDK * * Bullet is a Collision Detection and Rigid Body Dynamics Library. The Library is Open Source and free for commercial use, under the ZLib license ( http://opensource.org/licenses/zlib-license.php ). * * There is the Physics Forum for feedback and general Collision Detection and Physics discussions. * Please visit http://www.bulletphysics.com * * @section install_sec Installation * * @subsection step1 Step 1: Download * You can download the Bullet Physics Library from the Google Code repository: http://code.google.com/p/bullet/downloads/list * @subsection step2 Step 2: Building * Bullet comes with autogenerated Project Files for Microsoft Visual Studio 6, 7, 7.1 and 8. * The main Workspace/Solution is located in Bullet/msvc/8/wksbullet.sln (replace 8 with your version). * * Under other platforms, like Linux or Mac OS-X, Bullet can be build using either using make, cmake, http://www.cmake.org , or jam, http://www.perforce.com/jam/jam.html . cmake can autogenerate Xcode, KDevelop, MSVC and other build systems. just run cmake . in the root of Bullet. * So if you are not using MSVC or cmake, you can run ./autogen.sh ./configure to create both Makefile and Jamfile and then run make or jam. * Jam is a build system that can build the library, demos and also autogenerate the MSVC Project Files. * If you don't have jam installed, you can make jam from the included jam-2.5 sources, or download jam from ftp://ftp.perforce.com/jam * * @subsection step3 Step 3: Testing demos * Try to run and experiment with BasicDemo executable as a starting point. * Bullet can be used in several ways, as Full Rigid Body simulation, as Collision Detector Library or Low Level / Snippets like the GJK Closest Point calculation. * The Dependencies can be seen in this documentation under Directories * * @subsection step4 Step 4: Integrating in your application, full Rigid Body and Soft Body simulation * Check out BasicDemo how to create a btDynamicsWorld, btRigidBody and btCollisionShape, Stepping the simulation and synchronizing your graphics object transform. * Check out SoftDemo how to use soft body dynamics, using btSoftRigidDynamicsWorld. * @subsection step5 Step 5 : Integrate the Collision Detection Library (without Dynamics and other Extras) * Bullet Collision Detection can also be used without the Dynamics/Extras. * Check out btCollisionWorld and btCollisionObject, and the CollisionInterfaceDemo. * @subsection step6 Step 6 : Use Snippets like the GJK Closest Point calculation. * Bullet has been designed in a modular way keeping dependencies to a minimum. The ConvexHullDistance demo demonstrates direct use of btGjkPairDetector. * * @section copyright Copyright * Copyright (C) 2005-2008 Erwin Coumans, some contributions Copyright Gino van den Bergen, Christer Ericson, Simon Hobbs, Ricardo Padrela, F Richter(res), Stephane Redon * Special thanks to all visitors of the Bullet Physics forum, and in particular above contributors, John McCutchan, Nathanael Presson, Dave Eberle, Dirk Gregorius, Erin Catto, Dave Eberle, Adam Moravanszky, * Pierre Terdiman, Kenny Erleben, Russell Smith, Oliver Strunk, Jan Paul van Waveren, Marten Svanfeldt. * */ #ifndef COLLISION_WORLD_H #define COLLISION_WORLD_H class btStackAlloc; class btCollisionShape; class btConvexShape; class btBroadphaseInterface; #include "LinearMath/btVector3.h" #include "LinearMath/btTransform.h" #include "btCollisionObject.h" #include "btCollisionDispatcher.h" #include "BulletCollision/BroadphaseCollision/btOverlappingPairCache.h" #include "LinearMath/btAlignedObjectArray.h" ///CollisionWorld is interface and container for the collision detection class btCollisionWorld { protected: btAlignedObjectArray m_collisionObjects; btDispatcher* m_dispatcher1; btDispatcherInfo m_dispatchInfo; btStackAlloc* m_stackAlloc; btBroadphaseInterface* m_broadphasePairCache; btIDebugDraw* m_debugDrawer; public: //this constructor doesn't own the dispatcher and paircache/broadphase btCollisionWorld(btDispatcher* dispatcher,btBroadphaseInterface* broadphasePairCache, btCollisionConfiguration* collisionConfiguration); virtual ~btCollisionWorld(); void setBroadphase(btBroadphaseInterface* pairCache) { m_broadphasePairCache = pairCache; } const btBroadphaseInterface* getBroadphase() const { return m_broadphasePairCache; } btBroadphaseInterface* getBroadphase() { return m_broadphasePairCache; } btOverlappingPairCache* getPairCache() { return m_broadphasePairCache->getOverlappingPairCache(); } btDispatcher* getDispatcher() { return m_dispatcher1; } const btDispatcher* getDispatcher() const { return m_dispatcher1; } void updateSingleAabb(btCollisionObject* colObj); virtual void updateAabbs(); virtual void setDebugDrawer(btIDebugDraw* debugDrawer) { m_debugDrawer = debugDrawer; } virtual btIDebugDraw* getDebugDrawer() { return m_debugDrawer; } ///LocalShapeInfo gives extra information for complex shapes ///Currently, only btTriangleMeshShape is available, so it just contains triangleIndex and subpart struct LocalShapeInfo { int m_shapePart; int m_triangleIndex; //const btCollisionShape* m_shapeTemp; //const btTransform* m_shapeLocalTransform; }; struct LocalRayResult { LocalRayResult(btCollisionObject* collisionObject, LocalShapeInfo* localShapeInfo, const btVector3& hitNormalLocal, btScalar hitFraction) :m_collisionObject(collisionObject), m_localShapeInfo(localShapeInfo), m_hitNormalLocal(hitNormalLocal), m_hitFraction(hitFraction) { } btCollisionObject* m_collisionObject; LocalShapeInfo* m_localShapeInfo; btVector3 m_hitNormalLocal; btScalar m_hitFraction; }; ///RayResultCallback is used to report new raycast results struct RayResultCallback { btScalar m_closestHitFraction; btCollisionObject* m_collisionObject; short int m_collisionFilterGroup; short int m_collisionFilterMask; //@BP Mod - Custom flags, currently used to enable backface culling on tri-meshes, see btRaycastCallback unsigned int m_flags; virtual ~RayResultCallback() { } bool hasHit() const { return (m_collisionObject != 0); } RayResultCallback() :m_closestHitFraction(btScalar(1.)), m_collisionObject(0), m_collisionFilterGroup(btBroadphaseProxy::DefaultFilter), m_collisionFilterMask(btBroadphaseProxy::AllFilter), //@BP Mod m_flags(0) { } virtual bool needsCollision(btBroadphaseProxy* proxy0) const { bool collides = (proxy0->m_collisionFilterGroup & m_collisionFilterMask) != 0; collides = collides && (m_collisionFilterGroup & proxy0->m_collisionFilterMask); return collides; } virtual btScalar addSingleResult(LocalRayResult& rayResult,bool normalInWorldSpace) = 0; }; struct ClosestRayResultCallback : public RayResultCallback { ClosestRayResultCallback(const btVector3& rayFromWorld,const btVector3& rayToWorld) :m_rayFromWorld(rayFromWorld), m_rayToWorld(rayToWorld) { } btVector3 m_rayFromWorld;//used to calculate hitPointWorld from hitFraction btVector3 m_rayToWorld; btVector3 m_hitNormalWorld; btVector3 m_hitPointWorld; virtual btScalar addSingleResult(LocalRayResult& rayResult,bool normalInWorldSpace) { //caller already does the filter on the m_closestHitFraction btAssert(rayResult.m_hitFraction <= m_closestHitFraction); m_closestHitFraction = rayResult.m_hitFraction; m_collisionObject = rayResult.m_collisionObject; if (normalInWorldSpace) { m_hitNormalWorld = rayResult.m_hitNormalLocal; } else { ///need to transform normal into worldspace m_hitNormalWorld = m_collisionObject->getWorldTransform().getBasis()*rayResult.m_hitNormalLocal; } m_hitPointWorld.setInterpolate3(m_rayFromWorld,m_rayToWorld,rayResult.m_hitFraction); return rayResult.m_hitFraction; } }; struct LocalConvexResult { LocalConvexResult(btCollisionObject* hitCollisionObject, LocalShapeInfo* localShapeInfo, const btVector3& hitNormalLocal, const btVector3& hitPointLocal, btScalar hitFraction ) :m_hitCollisionObject(hitCollisionObject), m_localShapeInfo(localShapeInfo), m_hitNormalLocal(hitNormalLocal), m_hitPointLocal(hitPointLocal), m_hitFraction(hitFraction) { } btCollisionObject* m_hitCollisionObject; LocalShapeInfo* m_localShapeInfo; btVector3 m_hitNormalLocal; btVector3 m_hitPointLocal; btScalar m_hitFraction; }; ///RayResultCallback is used to report new raycast results struct ConvexResultCallback { btScalar m_closestHitFraction; short int m_collisionFilterGroup; short int m_collisionFilterMask; ConvexResultCallback() :m_closestHitFraction(btScalar(1.)), m_collisionFilterGroup(btBroadphaseProxy::DefaultFilter), m_collisionFilterMask(btBroadphaseProxy::AllFilter) { } virtual ~ConvexResultCallback() { } bool hasHit() const { return (m_closestHitFraction < btScalar(1.)); } virtual bool needsCollision(btBroadphaseProxy* proxy0) const { bool collides = (proxy0->m_collisionFilterGroup & m_collisionFilterMask) != 0; collides = collides && (m_collisionFilterGroup & proxy0->m_collisionFilterMask); return collides; } virtual btScalar addSingleResult(LocalConvexResult& convexResult,bool normalInWorldSpace) = 0; }; struct ClosestConvexResultCallback : public ConvexResultCallback { ClosestConvexResultCallback(const btVector3& convexFromWorld,const btVector3& convexToWorld) :m_convexFromWorld(convexFromWorld), m_convexToWorld(convexToWorld), m_hitCollisionObject(0) { } btVector3 m_convexFromWorld;//used to calculate hitPointWorld from hitFraction btVector3 m_convexToWorld; btVector3 m_hitNormalWorld; btVector3 m_hitPointWorld; btCollisionObject* m_hitCollisionObject; virtual btScalar addSingleResult(LocalConvexResult& convexResult,bool normalInWorldSpace) { //caller already does the filter on the m_closestHitFraction btAssert(convexResult.m_hitFraction <= m_closestHitFraction); m_closestHitFraction = convexResult.m_hitFraction; m_hitCollisionObject = convexResult.m_hitCollisionObject; if (normalInWorldSpace) { m_hitNormalWorld = convexResult.m_hitNormalLocal; } else { ///need to transform normal into worldspace m_hitNormalWorld = m_hitCollisionObject->getWorldTransform().getBasis()*convexResult.m_hitNormalLocal; } m_hitPointWorld = convexResult.m_hitPointLocal; return convexResult.m_hitFraction; } }; int getNumCollisionObjects() const { return int(m_collisionObjects.size()); } /// rayTest performs a raycast on all objects in the btCollisionWorld, and calls the resultCallback /// This allows for several queries: first hit, all hits, any hit, dependent on the value returned by the callback. virtual void rayTest(const btVector3& rayFromWorld, const btVector3& rayToWorld, RayResultCallback& resultCallback) const; // convexTest performs a swept convex cast on all objects in the btCollisionWorld, and calls the resultCallback // This allows for several queries: first hit, all hits, any hit, dependent on the value return by the callback. void convexSweepTest (const btConvexShape* castShape, const btTransform& from, const btTransform& to, ConvexResultCallback& resultCallback, btScalar allowedCcdPenetration = btScalar(0.)) const; /// rayTestSingle performs a raycast call and calls the resultCallback. It is used internally by rayTest. /// In a future implementation, we consider moving the ray test as a virtual method in btCollisionShape. /// This allows more customization. static void rayTestSingle(const btTransform& rayFromTrans,const btTransform& rayToTrans, btCollisionObject* collisionObject, const btCollisionShape* collisionShape, const btTransform& colObjWorldTransform, RayResultCallback& resultCallback); /// objectQuerySingle performs a collision detection query and calls the resultCallback. It is used internally by rayTest. static void objectQuerySingle(const btConvexShape* castShape, const btTransform& rayFromTrans,const btTransform& rayToTrans, btCollisionObject* collisionObject, const btCollisionShape* collisionShape, const btTransform& colObjWorldTransform, ConvexResultCallback& resultCallback, btScalar allowedPenetration); void addCollisionObject(btCollisionObject* collisionObject,short int collisionFilterGroup=btBroadphaseProxy::DefaultFilter,short int collisionFilterMask=btBroadphaseProxy::AllFilter); btCollisionObjectArray& getCollisionObjectArray() { return m_collisionObjects; } const btCollisionObjectArray& getCollisionObjectArray() const { return m_collisionObjects; } void removeCollisionObject(btCollisionObject* collisionObject); virtual void performDiscreteCollisionDetection(); btDispatcherInfo& getDispatchInfo() { return m_dispatchInfo; } const btDispatcherInfo& getDispatchInfo() const { return m_dispatchInfo; } }; #endif //COLLISION_WORLD_H