/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include "btGjkPairDetector.h" #include "BulletCollision/CollisionShapes/btConvexShape.h" #include "BulletCollision/NarrowPhaseCollision/btSimplexSolverInterface.h" #include "BulletCollision/NarrowPhaseCollision/btConvexPenetrationDepthSolver.h" #if defined(DEBUG) || defined (_DEBUG) //#define TEST_NON_VIRTUAL 1 #include //for debug printf #ifdef __SPU__ #include #define printf spu_printf //#define DEBUG_SPU_COLLISION_DETECTION 1 #endif //__SPU__ #endif //must be above the machine epsilon #define REL_ERROR2 btScalar(1.0e-6) //temp globals, to improve GJK/EPA/penetration calculations int gNumDeepPenetrationChecks = 0; int gNumGjkChecks = 0; btGjkPairDetector::btGjkPairDetector(const btConvexShape* objectA,const btConvexShape* objectB,btSimplexSolverInterface* simplexSolver,btConvexPenetrationDepthSolver* penetrationDepthSolver) :m_cachedSeparatingAxis(btScalar(0.),btScalar(0.),btScalar(1.)), m_penetrationDepthSolver(penetrationDepthSolver), m_simplexSolver(simplexSolver), m_minkowskiA(objectA), m_minkowskiB(objectB), m_ignoreMargin(false), m_lastUsedMethod(-1), m_catchDegeneracies(1) { } void btGjkPairDetector::getClosestPoints(const ClosestPointInput& input,Result& output,class btIDebugDraw* debugDraw,bool swapResults) { m_cachedSeparatingDistance = 0.f; btScalar distance=btScalar(0.); btVector3 normalInB(btScalar(0.),btScalar(0.),btScalar(0.)); btVector3 pointOnA,pointOnB; btTransform localTransA = input.m_transformA; btTransform localTransB = input.m_transformB; btVector3 positionOffset = (localTransA.getOrigin() + localTransB.getOrigin()) * btScalar(0.5); localTransA.getOrigin() -= positionOffset; localTransB.getOrigin() -= positionOffset; #ifdef __SPU__ btScalar marginA = m_minkowskiA->getMarginNonVirtual(); btScalar marginB = m_minkowskiB->getMarginNonVirtual(); #else btScalar marginA = m_minkowskiA->getMargin(); btScalar marginB = m_minkowskiB->getMargin(); #ifdef TEST_NON_VIRTUAL btScalar marginAv = m_minkowskiA->getMarginNonVirtual(); btScalar marginBv = m_minkowskiB->getMarginNonVirtual(); btAssert(marginA == marginAv); btAssert(marginB == marginBv); #endif //TEST_NON_VIRTUAL #endif gNumGjkChecks++; #ifdef DEBUG_SPU_COLLISION_DETECTION spu_printf("inside gjk\n"); #endif //for CCD we don't use margins if (m_ignoreMargin) { marginA = btScalar(0.); marginB = btScalar(0.); #ifdef DEBUG_SPU_COLLISION_DETECTION spu_printf("ignoring margin\n"); #endif } m_curIter = 0; int gGjkMaxIter = 1000;//this is to catch invalid input, perhaps check for #NaN? m_cachedSeparatingAxis.setValue(0,1,0); bool isValid = false; bool checkSimplex = false; bool checkPenetration = true; m_degenerateSimplex = 0; m_lastUsedMethod = -1; { btScalar squaredDistance = SIMD_INFINITY; btScalar delta = btScalar(0.); btScalar margin = marginA + marginB; m_simplexSolver->reset(); for ( ; ; ) //while (true) { btVector3 seperatingAxisInA = (-m_cachedSeparatingAxis)* input.m_transformA.getBasis(); btVector3 seperatingAxisInB = m_cachedSeparatingAxis* input.m_transformB.getBasis(); #ifdef __SPU__ btVector3 pInA = m_minkowskiA->localGetSupportVertexWithoutMarginNonVirtual(seperatingAxisInA); btVector3 qInB = m_minkowskiB->localGetSupportVertexWithoutMarginNonVirtual(seperatingAxisInB); #else btVector3 pInA = m_minkowskiA->localGetSupportingVertexWithoutMargin(seperatingAxisInA); btVector3 qInB = m_minkowskiB->localGetSupportingVertexWithoutMargin(seperatingAxisInB); #ifdef TEST_NON_VIRTUAL btVector3 pInAv = m_minkowskiA->localGetSupportingVertexWithoutMargin(seperatingAxisInA); btVector3 qInBv = m_minkowskiB->localGetSupportingVertexWithoutMargin(seperatingAxisInB); btAssert((pInAv-pInA).length() < 0.0001); btAssert((qInBv-qInB).length() < 0.0001); #endif // #endif //__SPU__ btVector3 pWorld = localTransA(pInA); btVector3 qWorld = localTransB(qInB); #ifdef DEBUG_SPU_COLLISION_DETECTION spu_printf("got local supporting vertices\n"); #endif btVector3 w = pWorld - qWorld; delta = m_cachedSeparatingAxis.dot(w); // potential exit, they don't overlap if ((delta > btScalar(0.0)) && (delta * delta > squaredDistance * input.m_maximumDistanceSquared)) { checkSimplex=true; //checkPenetration = false; break; } //exit 0: the new point is already in the simplex, or we didn't come any closer if (m_simplexSolver->inSimplex(w)) { m_degenerateSimplex = 1; checkSimplex = true; break; } // are we getting any closer ? btScalar f0 = squaredDistance - delta; btScalar f1 = squaredDistance * REL_ERROR2; if (f0 <= f1) { if (f0 <= btScalar(0.)) { m_degenerateSimplex = 2; } checkSimplex = true; break; } #ifdef DEBUG_SPU_COLLISION_DETECTION spu_printf("addVertex 1\n"); #endif //add current vertex to simplex m_simplexSolver->addVertex(w, pWorld, qWorld); #ifdef DEBUG_SPU_COLLISION_DETECTION spu_printf("addVertex 2\n"); #endif //calculate the closest point to the origin (update vector v) if (!m_simplexSolver->closest(m_cachedSeparatingAxis)) { m_degenerateSimplex = 3; checkSimplex = true; break; } if(m_cachedSeparatingAxis.length2()compute_points(pointOnA, pointOnB); //are we getting any closer ? if (previousSquaredDistance - squaredDistance <= SIMD_EPSILON * previousSquaredDistance) { m_simplexSolver->backup_closest(m_cachedSeparatingAxis); checkSimplex = true; break; } //degeneracy, this is typically due to invalid/uninitialized worldtransforms for a btCollisionObject if (m_curIter++ > gGjkMaxIter) { #if defined(DEBUG) || defined (_DEBUG) || defined (DEBUG_SPU_COLLISION_DETECTION) printf("btGjkPairDetector maxIter exceeded:%i\n",m_curIter); printf("sepAxis=(%f,%f,%f), squaredDistance = %f, shapeTypeA=%i,shapeTypeB=%i\n", m_cachedSeparatingAxis.getX(), m_cachedSeparatingAxis.getY(), m_cachedSeparatingAxis.getZ(), squaredDistance, m_minkowskiA->getShapeType(), m_minkowskiB->getShapeType()); #endif break; } bool check = (!m_simplexSolver->fullSimplex()); //bool check = (!m_simplexSolver->fullSimplex() && squaredDistance > SIMD_EPSILON * m_simplexSolver->maxVertex()); if (!check) { //do we need this backup_closest here ? m_simplexSolver->backup_closest(m_cachedSeparatingAxis); break; } } if (checkSimplex) { m_simplexSolver->compute_points(pointOnA, pointOnB); normalInB = pointOnA-pointOnB; btScalar lenSqr = m_cachedSeparatingAxis.length2(); //valid normal if (lenSqr < 0.0001) { m_degenerateSimplex = 5; } if (lenSqr > SIMD_EPSILON*SIMD_EPSILON) { btScalar rlen = btScalar(1.) / btSqrt(lenSqr ); normalInB *= rlen; //normalize btScalar s = btSqrt(squaredDistance); btAssert(s > btScalar(0.0)); pointOnA -= m_cachedSeparatingAxis * (marginA / s); pointOnB += m_cachedSeparatingAxis * (marginB / s); distance = ((btScalar(1.)/rlen) - margin); isValid = true; m_lastUsedMethod = 1; } else { m_lastUsedMethod = 2; } } bool catchDegeneratePenetrationCase = (m_catchDegeneracies && m_penetrationDepthSolver && m_degenerateSimplex && ((distance+margin) < 0.01)); //if (checkPenetration && !isValid) if (checkPenetration && (!isValid || catchDegeneratePenetrationCase )) { //penetration case //if there is no way to handle penetrations, bail out if (m_penetrationDepthSolver) { // Penetration depth case. btVector3 tmpPointOnA,tmpPointOnB; gNumDeepPenetrationChecks++; bool isValid2 = m_penetrationDepthSolver->calcPenDepth( *m_simplexSolver, m_minkowskiA,m_minkowskiB, localTransA,localTransB, m_cachedSeparatingAxis, tmpPointOnA, tmpPointOnB, debugDraw ); if (isValid2) { btVector3 tmpNormalInB = tmpPointOnB-tmpPointOnA; btScalar lenSqr = tmpNormalInB.length2(); if (lenSqr > (SIMD_EPSILON*SIMD_EPSILON)) { tmpNormalInB /= btSqrt(lenSqr); btScalar distance2 = -(tmpPointOnA-tmpPointOnB).length(); //only replace valid penetrations when the result is deeper (check) if (!isValid || (distance2 < distance)) { distance = distance2; pointOnA = tmpPointOnA; pointOnB = tmpPointOnB; normalInB = tmpNormalInB; isValid = true; m_lastUsedMethod = 3; } else { } } else { //isValid = false; m_lastUsedMethod = 4; } } else { m_lastUsedMethod = 5; } } } } if (isValid) { #ifdef __SPU__ //spu_printf("distance\n"); #endif //__CELLOS_LV2__ #ifdef DEBUG_SPU_COLLISION_DETECTION spu_printf("output 1\n"); #endif m_cachedSeparatingAxis = normalInB; m_cachedSeparatingDistance = distance; output.addContactPoint( normalInB, pointOnB+positionOffset, distance); #ifdef DEBUG_SPU_COLLISION_DETECTION spu_printf("output 2\n"); #endif //printf("gjk add:%f",distance); } }