/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ /* 2007-09-09 Refactored by Francisco Le?n email: projectileman@yahoo.com http://gimpact.sf.net */ #include "btGeneric6DofConstraint.h" #include "BulletDynamics/Dynamics/btRigidBody.h" #include "LinearMath/btTransformUtil.h" #include "LinearMath/btTransformUtil.h" #include #define D6_USE_OBSOLETE_METHOD false btGeneric6DofConstraint::btGeneric6DofConstraint() :btTypedConstraint(D6_CONSTRAINT_TYPE), m_useLinearReferenceFrameA(true), m_useSolveConstraintObsolete(D6_USE_OBSOLETE_METHOD) { } btGeneric6DofConstraint::btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB, bool useLinearReferenceFrameA) : btTypedConstraint(D6_CONSTRAINT_TYPE, rbA, rbB) , m_frameInA(frameInA) , m_frameInB(frameInB), m_useLinearReferenceFrameA(useLinearReferenceFrameA), m_useSolveConstraintObsolete(D6_USE_OBSOLETE_METHOD) { } #define GENERIC_D6_DISABLE_WARMSTARTING 1 btScalar btGetMatrixElem(const btMatrix3x3& mat, int index); btScalar btGetMatrixElem(const btMatrix3x3& mat, int index) { int i = index%3; int j = index/3; return mat[i][j]; } ///MatrixToEulerXYZ from http://www.geometrictools.com/LibFoundation/Mathematics/Wm4Matrix3.inl.html bool matrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz); bool matrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz) { // // rot = cy*cz -cy*sz sy // // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx // // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy // btScalar fi = btGetMatrixElem(mat,2); if (fi < btScalar(1.0f)) { if (fi > btScalar(-1.0f)) { xyz[0] = btAtan2(-btGetMatrixElem(mat,5),btGetMatrixElem(mat,8)); xyz[1] = btAsin(btGetMatrixElem(mat,2)); xyz[2] = btAtan2(-btGetMatrixElem(mat,1),btGetMatrixElem(mat,0)); return true; } else { // WARNING. Not unique. XA - ZA = -atan2(r10,r11) xyz[0] = -btAtan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4)); xyz[1] = -SIMD_HALF_PI; xyz[2] = btScalar(0.0); return false; } } else { // WARNING. Not unique. XAngle + ZAngle = atan2(r10,r11) xyz[0] = btAtan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4)); xyz[1] = SIMD_HALF_PI; xyz[2] = 0.0; } return false; } //////////////////////////// btRotationalLimitMotor //////////////////////////////////// int btRotationalLimitMotor::testLimitValue(btScalar test_value) { if(m_loLimit>m_hiLimit) { m_currentLimit = 0;//Free from violation return 0; } if (test_value < m_loLimit) { m_currentLimit = 1;//low limit violation m_currentLimitError = test_value - m_loLimit; return 1; } else if (test_value> m_hiLimit) { m_currentLimit = 2;//High limit violation m_currentLimitError = test_value - m_hiLimit; return 2; }; m_currentLimit = 0;//Free from violation return 0; } btScalar btRotationalLimitMotor::solveAngularLimits( btScalar timeStep,btVector3& axis,btScalar jacDiagABInv, btRigidBody * body0, btSolverBody& bodyA, btRigidBody * body1, btSolverBody& bodyB) { if (needApplyTorques()==false) return 0.0f; btScalar target_velocity = m_targetVelocity; btScalar maxMotorForce = m_maxMotorForce; //current error correction if (m_currentLimit!=0) { target_velocity = -m_ERP*m_currentLimitError/(timeStep); maxMotorForce = m_maxLimitForce; } maxMotorForce *= timeStep; // current velocity difference btVector3 angVelA; bodyA.getAngularVelocity(angVelA); btVector3 angVelB; bodyB.getAngularVelocity(angVelB); btVector3 vel_diff; vel_diff = angVelA-angVelB; btScalar rel_vel = axis.dot(vel_diff); // correction velocity btScalar motor_relvel = m_limitSoftness*(target_velocity - m_damping*rel_vel); if ( motor_relvel < SIMD_EPSILON && motor_relvel > -SIMD_EPSILON ) { return 0.0f;//no need for applying force } // correction impulse btScalar unclippedMotorImpulse = (1+m_bounce)*motor_relvel*jacDiagABInv; // clip correction impulse btScalar clippedMotorImpulse; ///@todo: should clip against accumulated impulse if (unclippedMotorImpulse>0.0f) { clippedMotorImpulse = unclippedMotorImpulse > maxMotorForce? maxMotorForce: unclippedMotorImpulse; } else { clippedMotorImpulse = unclippedMotorImpulse < -maxMotorForce ? -maxMotorForce: unclippedMotorImpulse; } // sort with accumulated impulses btScalar lo = btScalar(-BT_LARGE_FLOAT); btScalar hi = btScalar(BT_LARGE_FLOAT); btScalar oldaccumImpulse = m_accumulatedImpulse; btScalar sum = oldaccumImpulse + clippedMotorImpulse; m_accumulatedImpulse = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum; clippedMotorImpulse = m_accumulatedImpulse - oldaccumImpulse; btVector3 motorImp = clippedMotorImpulse * axis; //body0->applyTorqueImpulse(motorImp); //body1->applyTorqueImpulse(-motorImp); bodyA.applyImpulse(btVector3(0,0,0), body0->getInvInertiaTensorWorld()*axis,clippedMotorImpulse); bodyB.applyImpulse(btVector3(0,0,0), body1->getInvInertiaTensorWorld()*axis,-clippedMotorImpulse); return clippedMotorImpulse; } //////////////////////////// End btRotationalLimitMotor //////////////////////////////////// //////////////////////////// btTranslationalLimitMotor //////////////////////////////////// int btTranslationalLimitMotor::testLimitValue(int limitIndex, btScalar test_value) { btScalar loLimit = m_lowerLimit[limitIndex]; btScalar hiLimit = m_upperLimit[limitIndex]; if(loLimit > hiLimit) { m_currentLimit[limitIndex] = 0;//Free from violation m_currentLimitError[limitIndex] = btScalar(0.f); return 0; } if (test_value < loLimit) { m_currentLimit[limitIndex] = 2;//low limit violation m_currentLimitError[limitIndex] = test_value - loLimit; return 2; } else if (test_value> hiLimit) { m_currentLimit[limitIndex] = 1;//High limit violation m_currentLimitError[limitIndex] = test_value - hiLimit; return 1; }; m_currentLimit[limitIndex] = 0;//Free from violation m_currentLimitError[limitIndex] = btScalar(0.f); return 0; } btScalar btTranslationalLimitMotor::solveLinearAxis( btScalar timeStep, btScalar jacDiagABInv, btRigidBody& body1,btSolverBody& bodyA,const btVector3 &pointInA, btRigidBody& body2,btSolverBody& bodyB,const btVector3 &pointInB, int limit_index, const btVector3 & axis_normal_on_a, const btVector3 & anchorPos) { ///find relative velocity // btVector3 rel_pos1 = pointInA - body1.getCenterOfMassPosition(); // btVector3 rel_pos2 = pointInB - body2.getCenterOfMassPosition(); btVector3 rel_pos1 = anchorPos - body1.getCenterOfMassPosition(); btVector3 rel_pos2 = anchorPos - body2.getCenterOfMassPosition(); btVector3 vel1; bodyA.getVelocityInLocalPointObsolete(rel_pos1,vel1); btVector3 vel2; bodyB.getVelocityInLocalPointObsolete(rel_pos2,vel2); btVector3 vel = vel1 - vel2; btScalar rel_vel = axis_normal_on_a.dot(vel); /// apply displacement correction //positional error (zeroth order error) btScalar depth = -(pointInA - pointInB).dot(axis_normal_on_a); btScalar lo = btScalar(-BT_LARGE_FLOAT); btScalar hi = btScalar(BT_LARGE_FLOAT); btScalar minLimit = m_lowerLimit[limit_index]; btScalar maxLimit = m_upperLimit[limit_index]; //handle the limits if (minLimit < maxLimit) { { if (depth > maxLimit) { depth -= maxLimit; lo = btScalar(0.); } else { if (depth < minLimit) { depth -= minLimit; hi = btScalar(0.); } else { return 0.0f; } } } } btScalar normalImpulse= m_limitSoftness*(m_restitution*depth/timeStep - m_damping*rel_vel) * jacDiagABInv; btScalar oldNormalImpulse = m_accumulatedImpulse[limit_index]; btScalar sum = oldNormalImpulse + normalImpulse; m_accumulatedImpulse[limit_index] = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum; normalImpulse = m_accumulatedImpulse[limit_index] - oldNormalImpulse; btVector3 impulse_vector = axis_normal_on_a * normalImpulse; //body1.applyImpulse( impulse_vector, rel_pos1); //body2.applyImpulse(-impulse_vector, rel_pos2); btVector3 ftorqueAxis1 = rel_pos1.cross(axis_normal_on_a); btVector3 ftorqueAxis2 = rel_pos2.cross(axis_normal_on_a); bodyA.applyImpulse(axis_normal_on_a*body1.getInvMass(), body1.getInvInertiaTensorWorld()*ftorqueAxis1,normalImpulse); bodyB.applyImpulse(axis_normal_on_a*body2.getInvMass(), body2.getInvInertiaTensorWorld()*ftorqueAxis2,-normalImpulse); return normalImpulse; } //////////////////////////// btTranslationalLimitMotor //////////////////////////////////// void btGeneric6DofConstraint::calculateAngleInfo() { btMatrix3x3 relative_frame = m_calculatedTransformA.getBasis().inverse()*m_calculatedTransformB.getBasis(); matrixToEulerXYZ(relative_frame,m_calculatedAxisAngleDiff); // in euler angle mode we do not actually constrain the angular velocity // along the axes axis[0] and axis[2] (although we do use axis[1]) : // // to get constrain w2-w1 along ...not // ------ --------------------- ------ // d(angle[0])/dt = 0 ax[1] x ax[2] ax[0] // d(angle[1])/dt = 0 ax[1] // d(angle[2])/dt = 0 ax[0] x ax[1] ax[2] // // constraining w2-w1 along an axis 'a' means that a'*(w2-w1)=0. // to prove the result for angle[0], write the expression for angle[0] from // GetInfo1 then take the derivative. to prove this for angle[2] it is // easier to take the euler rate expression for d(angle[2])/dt with respect // to the components of w and set that to 0. btVector3 axis0 = m_calculatedTransformB.getBasis().getColumn(0); btVector3 axis2 = m_calculatedTransformA.getBasis().getColumn(2); m_calculatedAxis[1] = axis2.cross(axis0); m_calculatedAxis[0] = m_calculatedAxis[1].cross(axis2); m_calculatedAxis[2] = axis0.cross(m_calculatedAxis[1]); m_calculatedAxis[0].normalize(); m_calculatedAxis[1].normalize(); m_calculatedAxis[2].normalize(); } void btGeneric6DofConstraint::calculateTransforms() { m_calculatedTransformA = m_rbA.getCenterOfMassTransform() * m_frameInA; m_calculatedTransformB = m_rbB.getCenterOfMassTransform() * m_frameInB; calculateLinearInfo(); calculateAngleInfo(); } void btGeneric6DofConstraint::buildLinearJacobian( btJacobianEntry & jacLinear,const btVector3 & normalWorld, const btVector3 & pivotAInW,const btVector3 & pivotBInW) { new (&jacLinear) btJacobianEntry( m_rbA.getCenterOfMassTransform().getBasis().transpose(), m_rbB.getCenterOfMassTransform().getBasis().transpose(), pivotAInW - m_rbA.getCenterOfMassPosition(), pivotBInW - m_rbB.getCenterOfMassPosition(), normalWorld, m_rbA.getInvInertiaDiagLocal(), m_rbA.getInvMass(), m_rbB.getInvInertiaDiagLocal(), m_rbB.getInvMass()); } void btGeneric6DofConstraint::buildAngularJacobian( btJacobianEntry & jacAngular,const btVector3 & jointAxisW) { new (&jacAngular) btJacobianEntry(jointAxisW, m_rbA.getCenterOfMassTransform().getBasis().transpose(), m_rbB.getCenterOfMassTransform().getBasis().transpose(), m_rbA.getInvInertiaDiagLocal(), m_rbB.getInvInertiaDiagLocal()); } bool btGeneric6DofConstraint::testAngularLimitMotor(int axis_index) { btScalar angle = m_calculatedAxisAngleDiff[axis_index]; m_angularLimits[axis_index].m_currentPosition = angle; //test limits m_angularLimits[axis_index].testLimitValue(angle); return m_angularLimits[axis_index].needApplyTorques(); } void btGeneric6DofConstraint::buildJacobian() { if (m_useSolveConstraintObsolete) { // Clear accumulated impulses for the next simulation step m_linearLimits.m_accumulatedImpulse.setValue(btScalar(0.), btScalar(0.), btScalar(0.)); int i; for(i = 0; i < 3; i++) { m_angularLimits[i].m_accumulatedImpulse = btScalar(0.); } //calculates transform calculateTransforms(); // const btVector3& pivotAInW = m_calculatedTransformA.getOrigin(); // const btVector3& pivotBInW = m_calculatedTransformB.getOrigin(); calcAnchorPos(); btVector3 pivotAInW = m_AnchorPos; btVector3 pivotBInW = m_AnchorPos; // not used here // btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition(); // btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition(); btVector3 normalWorld; //linear part for (i=0;i<3;i++) { if (m_linearLimits.isLimited(i)) { if (m_useLinearReferenceFrameA) normalWorld = m_calculatedTransformA.getBasis().getColumn(i); else normalWorld = m_calculatedTransformB.getBasis().getColumn(i); buildLinearJacobian( m_jacLinear[i],normalWorld , pivotAInW,pivotBInW); } } // angular part for (i=0;i<3;i++) { //calculates error angle if (testAngularLimitMotor(i)) { normalWorld = this->getAxis(i); // Create angular atom buildAngularJacobian(m_jacAng[i],normalWorld); } } } } void btGeneric6DofConstraint::getInfo1 (btConstraintInfo1* info) { if (m_useSolveConstraintObsolete) { info->m_numConstraintRows = 0; info->nub = 0; } else { //prepare constraint calculateTransforms(); info->m_numConstraintRows = 0; info->nub = 6; int i; //test linear limits for(i = 0; i < 3; i++) { if(m_linearLimits.needApplyForce(i)) { info->m_numConstraintRows++; info->nub--; } } //test angular limits for (i=0;i<3 ;i++ ) { if(testAngularLimitMotor(i)) { info->m_numConstraintRows++; info->nub--; } } } } void btGeneric6DofConstraint::getInfo2 (btConstraintInfo2* info) { btAssert(!m_useSolveConstraintObsolete); int row = setLinearLimits(info); setAngularLimits(info, row); } int btGeneric6DofConstraint::setLinearLimits(btConstraintInfo2* info) { btGeneric6DofConstraint * d6constraint = this; int row = 0; //solve linear limits btRotationalLimitMotor limot; for (int i=0;i<3 ;i++ ) { if(m_linearLimits.needApplyForce(i)) { // re-use rotational motor code limot.m_bounce = btScalar(0.f); limot.m_currentLimit = m_linearLimits.m_currentLimit[i]; limot.m_currentPosition = m_linearLimits.m_currentLinearDiff[i]; limot.m_currentLimitError = m_linearLimits.m_currentLimitError[i]; limot.m_damping = m_linearLimits.m_damping; limot.m_enableMotor = m_linearLimits.m_enableMotor[i]; limot.m_ERP = m_linearLimits.m_restitution; limot.m_hiLimit = m_linearLimits.m_upperLimit[i]; limot.m_limitSoftness = m_linearLimits.m_limitSoftness; limot.m_loLimit = m_linearLimits.m_lowerLimit[i]; limot.m_maxLimitForce = btScalar(0.f); limot.m_maxMotorForce = m_linearLimits.m_maxMotorForce[i]; limot.m_targetVelocity = m_linearLimits.m_targetVelocity[i]; btVector3 axis = m_calculatedTransformA.getBasis().getColumn(i); row += get_limit_motor_info2(&limot, &m_rbA, &m_rbB, info, row, axis, 0); } } return row; } int btGeneric6DofConstraint::setAngularLimits(btConstraintInfo2 *info, int row_offset) { btGeneric6DofConstraint * d6constraint = this; int row = row_offset; //solve angular limits for (int i=0;i<3 ;i++ ) { if(d6constraint->getRotationalLimitMotor(i)->needApplyTorques()) { btVector3 axis = d6constraint->getAxis(i); row += get_limit_motor_info2( d6constraint->getRotationalLimitMotor(i), &m_rbA, &m_rbB, info,row,axis,1); } } return row; } void btGeneric6DofConstraint::solveConstraintObsolete(btSolverBody& bodyA,btSolverBody& bodyB,btScalar timeStep) { if (m_useSolveConstraintObsolete) { m_timeStep = timeStep; //calculateTransforms(); int i; // linear btVector3 pointInA = m_calculatedTransformA.getOrigin(); btVector3 pointInB = m_calculatedTransformB.getOrigin(); btScalar jacDiagABInv; btVector3 linear_axis; for (i=0;i<3;i++) { if (m_linearLimits.isLimited(i)) { jacDiagABInv = btScalar(1.) / m_jacLinear[i].getDiagonal(); if (m_useLinearReferenceFrameA) linear_axis = m_calculatedTransformA.getBasis().getColumn(i); else linear_axis = m_calculatedTransformB.getBasis().getColumn(i); m_linearLimits.solveLinearAxis( m_timeStep, jacDiagABInv, m_rbA,bodyA,pointInA, m_rbB,bodyB,pointInB, i,linear_axis, m_AnchorPos); } } // angular btVector3 angular_axis; btScalar angularJacDiagABInv; for (i=0;i<3;i++) { if (m_angularLimits[i].needApplyTorques()) { // get axis angular_axis = getAxis(i); angularJacDiagABInv = btScalar(1.) / m_jacAng[i].getDiagonal(); m_angularLimits[i].solveAngularLimits(m_timeStep,angular_axis,angularJacDiagABInv, &m_rbA,bodyA,&m_rbB,bodyB); } } } } void btGeneric6DofConstraint::updateRHS(btScalar timeStep) { (void)timeStep; } btVector3 btGeneric6DofConstraint::getAxis(int axis_index) const { return m_calculatedAxis[axis_index]; } btScalar btGeneric6DofConstraint::getRelativePivotPosition(int axisIndex) const { return m_calculatedLinearDiff[axisIndex]; } btScalar btGeneric6DofConstraint::getAngle(int axisIndex) const { return m_calculatedAxisAngleDiff[axisIndex]; } void btGeneric6DofConstraint::calcAnchorPos(void) { btScalar imA = m_rbA.getInvMass(); btScalar imB = m_rbB.getInvMass(); btScalar weight; if(imB == btScalar(0.0)) { weight = btScalar(1.0); } else { weight = imA / (imA + imB); } const btVector3& pA = m_calculatedTransformA.getOrigin(); const btVector3& pB = m_calculatedTransformB.getOrigin(); m_AnchorPos = pA * weight + pB * (btScalar(1.0) - weight); return; } void btGeneric6DofConstraint::calculateLinearInfo() { m_calculatedLinearDiff = m_calculatedTransformB.getOrigin() - m_calculatedTransformA.getOrigin(); m_calculatedLinearDiff = m_calculatedTransformA.getBasis().inverse() * m_calculatedLinearDiff; for(int i = 0; i < 3; i++) { m_linearLimits.m_currentLinearDiff[i] = m_calculatedLinearDiff[i]; m_linearLimits.testLimitValue(i, m_calculatedLinearDiff[i]); } } int btGeneric6DofConstraint::get_limit_motor_info2( btRotationalLimitMotor * limot, btRigidBody * body0, btRigidBody * body1, btConstraintInfo2 *info, int row, btVector3& ax1, int rotational) { int srow = row * info->rowskip; int powered = limot->m_enableMotor; int limit = limot->m_currentLimit; if (powered || limit) { // if the joint is powered, or has joint limits, add in the extra row btScalar *J1 = rotational ? info->m_J1angularAxis : info->m_J1linearAxis; btScalar *J2 = rotational ? info->m_J2angularAxis : 0; J1[srow+0] = ax1[0]; J1[srow+1] = ax1[1]; J1[srow+2] = ax1[2]; if(rotational) { J2[srow+0] = -ax1[0]; J2[srow+1] = -ax1[1]; J2[srow+2] = -ax1[2]; } if((!rotational)) { btVector3 ltd; // Linear Torque Decoupling vector btVector3 c = m_calculatedTransformB.getOrigin() - body0->getCenterOfMassPosition(); ltd = c.cross(ax1); info->m_J1angularAxis[srow+0] = ltd[0]; info->m_J1angularAxis[srow+1] = ltd[1]; info->m_J1angularAxis[srow+2] = ltd[2]; c = m_calculatedTransformB.getOrigin() - body1->getCenterOfMassPosition(); ltd = -c.cross(ax1); info->m_J2angularAxis[srow+0] = ltd[0]; info->m_J2angularAxis[srow+1] = ltd[1]; info->m_J2angularAxis[srow+2] = ltd[2]; } // if we're limited low and high simultaneously, the joint motor is // ineffective if (limit && (limot->m_loLimit == limot->m_hiLimit)) powered = 0; info->m_constraintError[srow] = btScalar(0.f); if (powered) { info->cfm[srow] = 0.0f; if(!limit) { btScalar tag_vel = rotational ? limot->m_targetVelocity : -limot->m_targetVelocity; btScalar mot_fact = getMotorFactor( limot->m_currentPosition, limot->m_loLimit, limot->m_hiLimit, tag_vel, info->fps * info->erp); info->m_constraintError[srow] += mot_fact * limot->m_targetVelocity; info->m_lowerLimit[srow] = -limot->m_maxMotorForce; info->m_upperLimit[srow] = limot->m_maxMotorForce; } } if(limit) { btScalar k = info->fps * limot->m_ERP; if(!rotational) { info->m_constraintError[srow] += k * limot->m_currentLimitError; } else { info->m_constraintError[srow] += -k * limot->m_currentLimitError; } info->cfm[srow] = 0.0f; if (limot->m_loLimit == limot->m_hiLimit) { // limited low and high simultaneously info->m_lowerLimit[srow] = -SIMD_INFINITY; info->m_upperLimit[srow] = SIMD_INFINITY; } else { if (limit == 1) { info->m_lowerLimit[srow] = 0; info->m_upperLimit[srow] = SIMD_INFINITY; } else { info->m_lowerLimit[srow] = -SIMD_INFINITY; info->m_upperLimit[srow] = 0; } // deal with bounce if (limot->m_bounce > 0) { // calculate joint velocity btScalar vel; if (rotational) { vel = body0->getAngularVelocity().dot(ax1); if (body1) vel -= body1->getAngularVelocity().dot(ax1); } else { vel = body0->getLinearVelocity().dot(ax1); if (body1) vel -= body1->getLinearVelocity().dot(ax1); } // only apply bounce if the velocity is incoming, and if the // resulting c[] exceeds what we already have. if (limit == 1) { if (vel < 0) { btScalar newc = -limot->m_bounce* vel; if (newc > info->m_constraintError[srow]) info->m_constraintError[srow] = newc; } } else { if (vel > 0) { btScalar newc = -limot->m_bounce * vel; if (newc < info->m_constraintError[srow]) info->m_constraintError[srow] = newc; } } } } } return 1; } else return 0; } btGeneric6DofSpringConstraint::btGeneric6DofSpringConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB ,bool useLinearReferenceFrameA) : btGeneric6DofConstraint(rbA, rbB, frameInA, frameInB, useLinearReferenceFrameA) { for(int i = 0; i < 6; i++) { m_springEnabled[i] = false; m_equilibriumPoint[i] = btScalar(0.f); m_springStiffness[i] = btScalar(0.f); m_springDamping[i] = btScalar(1.f); } } void btGeneric6DofSpringConstraint::enableSpring(int index, bool onOff) { btAssert((index >= 0) && (index < 6)); m_springEnabled[index] = onOff; if(index < 3) { m_linearLimits.m_enableMotor[index] = onOff; } else { m_angularLimits[index - 3].m_enableMotor = onOff; } } void btGeneric6DofSpringConstraint::setStiffness(int index, btScalar stiffness) { btAssert((index >= 0) && (index < 6)); m_springStiffness[index] = stiffness; } void btGeneric6DofSpringConstraint::setDamping(int index, btScalar damping) { btAssert((index >= 0) && (index < 6)); m_springDamping[index] = damping; } void btGeneric6DofSpringConstraint::setEquilibriumPoint() { calculateTransforms(); for(int i = 0; i < 3; i++) { m_equilibriumPoint[i] = m_calculatedLinearDiff[i]; } for(int i = 0; i < 3; i++) { m_equilibriumPoint[i + 3] = m_calculatedAxisAngleDiff[i]; } } void btGeneric6DofSpringConstraint::setEquilibriumPoint(int index) { btAssert((index >= 0) && (index < 6)); calculateTransforms(); if(index < 3) { m_equilibriumPoint[index] = m_calculatedLinearDiff[index]; } else { m_equilibriumPoint[index + 3] = m_calculatedAxisAngleDiff[index]; } } void btGeneric6DofSpringConstraint::internalUpdateSprings(btConstraintInfo2* info) { calculateTransforms(); // it is assumed that calculateTransforms() have been called before this call int i; btVector3 relVel = m_rbB.getLinearVelocity() - m_rbA.getLinearVelocity(); for(i = 0; i < 3; i++) { if(m_springEnabled[i]) { // get current position of constraint btScalar currPos = m_calculatedLinearDiff[i]; // calculate difference btScalar delta = currPos - m_equilibriumPoint[i]; // spring force is (delta * m_stiffness) according to Hooke's Law btScalar force = delta * m_springStiffness[i]; btScalar velFactor = info->fps * m_springDamping[i]; m_linearLimits.m_targetVelocity[i] = velFactor * force; m_linearLimits.m_maxMotorForce[i] = btFabs(force) / info->fps; } } for(i = 0; i < 3; i++) { if(m_springEnabled[i + 3]) { // get current position of constraint btScalar currPos = m_calculatedAxisAngleDiff[i]; // calculate difference btScalar delta = currPos - m_equilibriumPoint[i+3]; // spring force is (-delta * m_stiffness) according to Hooke's Law btScalar force = -delta * m_springStiffness[i+3]; btScalar velFactor = info->fps * m_springDamping[i+3]; m_angularLimits[i].m_targetVelocity = velFactor * force; m_angularLimits[i].m_maxMotorForce = btFabs(force) / info->fps; } } } void btGeneric6DofSpringConstraint::getInfo2(btConstraintInfo2* info) { // this will be called by constraint solver at the constraint setup stage // set current motor parameters internalUpdateSprings(info); // do the rest of job for constraint setup btGeneric6DofConstraint::getInfo2(info); }