/*
* $Id: AUD_OpenALDevice.cpp 27180 2010-02-28 08:53:08Z nexyon $
*
* ***** BEGIN LGPL LICENSE BLOCK *****
*
* Copyright 2009 Jörg Hermann Müller
*
* This file is part of AudaSpace.
*
* AudaSpace is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* AudaSpace is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with AudaSpace. If not, see .
*
* ***** END LGPL LICENSE BLOCK *****
*/
#include "AUD_OpenALDevice.h"
#include "AUD_IReader.h"
#include "AUD_ConverterFactory.h"
#include "AUD_SourceCaps.h"
#include
#include
#ifdef WIN32
#include
#else
#include
#endif
#define AUD_OPENAL_CYCLE_BUFFERS 3
/// Saves the data for playback.
struct AUD_OpenALHandle : AUD_Handle
{
/// Whether it's a buffered or a streamed source.
bool isBuffered;
/// The reader source.
AUD_IReader* reader;
/// Whether to keep the source if end of it is reached.
bool keep;
/// OpenAL sample format.
ALenum format;
/// OpenAL source.
ALuint source;
/// OpenAL buffers.
ALuint buffers[AUD_OPENAL_CYCLE_BUFFERS];
/// The first buffer to be read next.
int current;
/// Whether the stream doesn't return any more data.
bool data_end;
};
struct AUD_OpenALBufferedFactory
{
/// The factory.
AUD_IFactory* factory;
/// The OpenAL buffer.
ALuint buffer;
};
typedef std::list::iterator AUD_HandleIterator;
typedef std::list::iterator AUD_BFIterator;
/******************************************************************************/
/**************************** Threading Code **********************************/
/******************************************************************************/
void* AUD_openalRunThread(void* device)
{
AUD_OpenALDevice* dev = (AUD_OpenALDevice*)device;
dev->updateStreams();
return NULL;
}
void AUD_OpenALDevice::start()
{
lock();
if(!m_playing)
{
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
pthread_create(&m_thread, &attr, AUD_openalRunThread, this);
pthread_attr_destroy(&attr);
m_playing = true;
}
unlock();
}
void AUD_OpenALDevice::updateStreams()
{
AUD_OpenALHandle* sound;
int length;
sample_t* buffer;
ALint info;
AUD_DeviceSpecs specs = m_specs;
while(1)
{
lock();
alcSuspendContext(m_context);
{
// for all sounds
AUD_HandleIterator it = m_playingSounds->begin();
while(it != m_playingSounds->end())
{
sound = *it;
// increment the iterator to make sure it's valid,
// in case the sound gets deleted after stopping
++it;
// is it a streamed sound?
if(!sound->isBuffered)
{
// check for buffer refilling
alGetSourcei(sound->source, AL_BUFFERS_PROCESSED, &info);
if(info)
{
specs.specs = sound->reader->getSpecs();
// for all empty buffers
while(info--)
{
// if there's still data to play back
if(!sound->data_end)
{
// read data
length = m_buffersize;
sound->reader->read(length, buffer);
// read nothing?
if(length == 0)
{
sound->data_end = true;
break;
}
// unqueue buffer
alSourceUnqueueBuffers(sound->source, 1,
&sound->buffers[sound->current]);
ALenum err;
if((err = alGetError()) != AL_NO_ERROR)
{
sound->data_end = true;
break;
}
// fill with new data
alBufferData(sound->buffers[sound->current],
sound->format,
buffer, length *
AUD_DEVICE_SAMPLE_SIZE(specs),
specs.rate);
if((err = alGetError()) != AL_NO_ERROR)
{
sound->data_end = true;
break;
}
// and queue again
alSourceQueueBuffers(sound->source, 1,
&sound->buffers[sound->current]);
if(alGetError() != AL_NO_ERROR)
{
sound->data_end = true;
break;
}
sound->current = (sound->current+1) %
AUD_OPENAL_CYCLE_BUFFERS;
}
else
break;
}
}
}
// check if the sound has been stopped
alGetSourcei(sound->source, AL_SOURCE_STATE, &info);
if(info != AL_PLAYING)
{
// if it really stopped
if(sound->data_end)
{
// pause or
if(sound->keep)
pause(sound);
// stop
else
stop(sound);
}
// continue playing
else
alSourcePlay(sound->source);
}
}
}
alcProcessContext(m_context);
// stop thread
if(m_playingSounds->empty())
{
unlock();
m_playing = false;
pthread_exit(NULL);
}
unlock();
#ifdef WIN32
Sleep(20);
#else
usleep(20000);
#endif
}
}
/******************************************************************************/
/**************************** IDevice Code ************************************/
/******************************************************************************/
bool AUD_OpenALDevice::isValid(AUD_Handle* handle)
{
for(AUD_HandleIterator i = m_playingSounds->begin();
i != m_playingSounds->end(); i++)
if(*i == handle)
return true;
for(AUD_HandleIterator i = m_pausedSounds->begin();
i != m_pausedSounds->end(); i++)
if(*i == handle)
return true;
return false;
}
AUD_OpenALDevice::AUD_OpenALDevice(AUD_DeviceSpecs specs, int buffersize)
{
// cannot determine how many channels or which format OpenAL uses, but
// it at least is able to play 16 bit stereo audio
specs.channels = AUD_CHANNELS_STEREO;
specs.format = AUD_FORMAT_S16;
#if 0
if(alcIsExtensionPresent(NULL, "ALC_ENUMERATION_EXT") == AL_TRUE)
{
ALCchar* devices = const_cast(alcGetString(NULL, ALC_DEVICE_SPECIFIER));
printf("OpenAL devices (standard is: %s):\n", alcGetString(NULL, ALC_DEFAULT_DEVICE_SPECIFIER));
while(*devices)
{
printf("%s\n", devices);
devices += strlen(devices) + 1;
}
}
#endif
m_device = alcOpenDevice(NULL);
if(!m_device)
AUD_THROW(AUD_ERROR_OPENAL);
// at least try to set the frequency
ALCint attribs[] = { ALC_FREQUENCY, specs.rate, 0 };
ALCint* attributes = attribs;
if(specs.rate == AUD_RATE_INVALID)
attributes = NULL;
m_context = alcCreateContext(m_device, attributes);
alcMakeContextCurrent(m_context);
alcGetIntegerv(m_device, ALC_FREQUENCY, 1, (ALCint*)&specs.rate);
// check for specific formats and channel counts to be played back
if(alIsExtensionPresent("AL_EXT_FLOAT32") == AL_TRUE)
{
specs.format = AUD_FORMAT_FLOAT32;
m_converter = NULL;
}
else
m_converter = new AUD_ConverterFactory(specs); AUD_NEW("factory")
m_useMC = alIsExtensionPresent("AL_EXT_MCFORMATS") == AL_TRUE;
alGetError();
m_specs = specs;
m_buffersize = buffersize;
m_playing = false;
m_playingSounds = new std::list(); AUD_NEW("list")
m_pausedSounds = new std::list(); AUD_NEW("list")
m_bufferedFactories = new std::list();
AUD_NEW("list")
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
pthread_mutex_init(&m_mutex, &attr);
pthread_mutexattr_destroy(&attr);
}
AUD_OpenALDevice::~AUD_OpenALDevice()
{
AUD_OpenALHandle* sound;
lock();
alcSuspendContext(m_context);
// delete all playing sounds
while(!m_playingSounds->empty())
{
sound = *(m_playingSounds->begin());
alDeleteSources(1, &sound->source);
if(!sound->isBuffered)
{
delete sound->reader; AUD_DELETE("reader")
alDeleteBuffers(AUD_OPENAL_CYCLE_BUFFERS, sound->buffers);
}
delete sound; AUD_DELETE("handle")
m_playingSounds->erase(m_playingSounds->begin());
}
// delete all paused sounds
while(!m_pausedSounds->empty())
{
sound = *(m_pausedSounds->begin());
alDeleteSources(1, &sound->source);
if(!sound->isBuffered)
{
delete sound->reader; AUD_DELETE("reader")
alDeleteBuffers(AUD_OPENAL_CYCLE_BUFFERS, sound->buffers);
}
delete sound; AUD_DELETE("handle")
m_pausedSounds->erase(m_pausedSounds->begin());
}
// delete all buffered factories
while(!m_bufferedFactories->empty())
{
alDeleteBuffers(1, &(*(m_bufferedFactories->begin()))->buffer);
delete *m_bufferedFactories->begin(); AUD_DELETE("bufferedfactory");
m_bufferedFactories->erase(m_bufferedFactories->begin());
}
alcProcessContext(m_context);
// wait for the thread to stop
if(m_playing)
{
unlock();
pthread_join(m_thread, NULL);
}
else
unlock();
delete m_playingSounds; AUD_DELETE("list")
delete m_pausedSounds; AUD_DELETE("list")
delete m_bufferedFactories; AUD_DELETE("list")
// quit OpenAL
alcMakeContextCurrent(NULL);
alcDestroyContext(m_context);
alcCloseDevice(m_device);
if(m_converter)
delete m_converter; AUD_DELETE("factory")
pthread_mutex_destroy(&m_mutex);
}
AUD_DeviceSpecs AUD_OpenALDevice::getSpecs()
{
return m_specs;
}
bool AUD_OpenALDevice::getFormat(ALenum &format, AUD_Specs specs)
{
bool valid = true;
format = 0;
switch(m_specs.format)
{
case AUD_FORMAT_S16:
switch(specs.channels)
{
case AUD_CHANNELS_MONO:
format = AL_FORMAT_MONO16;
break;
case AUD_CHANNELS_STEREO:
format = AL_FORMAT_STEREO16;
break;
case AUD_CHANNELS_SURROUND4:
if(m_useMC)
{
format = alGetEnumValue("AL_FORMAT_QUAD16");
break;
}
case AUD_CHANNELS_SURROUND51:
if(m_useMC)
{
format = alGetEnumValue("AL_FORMAT_51CHN16");
break;
}
case AUD_CHANNELS_SURROUND61:
if(m_useMC)
{
format = alGetEnumValue("AL_FORMAT_61CHN16");
break;
}
case AUD_CHANNELS_SURROUND71:
if(m_useMC)
{
format = alGetEnumValue("AL_FORMAT_71CHN16");
break;
}
default:
valid = false;
}
break;
case AUD_FORMAT_FLOAT32:
switch(specs.channels)
{
case AUD_CHANNELS_MONO:
format = alGetEnumValue("AL_FORMAT_MONO_FLOAT32");
break;
case AUD_CHANNELS_STEREO:
format = alGetEnumValue("AL_FORMAT_STEREO_FLOAT32");
break;
case AUD_CHANNELS_SURROUND4:
if(m_useMC)
{
format = alGetEnumValue("AL_FORMAT_QUAD32");
break;
}
case AUD_CHANNELS_SURROUND51:
if(m_useMC)
{
format = alGetEnumValue("AL_FORMAT_51CHN32");
break;
}
case AUD_CHANNELS_SURROUND61:
if(m_useMC)
{
format = alGetEnumValue("AL_FORMAT_61CHN32");
break;
}
case AUD_CHANNELS_SURROUND71:
if(m_useMC)
{
format = alGetEnumValue("AL_FORMAT_71CHN32");
break;
}
default:
valid = false;
}
break;
default:
valid = false;
}
if(!format)
valid = false;
return valid;
}
AUD_Handle* AUD_OpenALDevice::play(AUD_IFactory* factory, bool keep)
{
lock();
AUD_OpenALHandle* sound = NULL;
try
{
// check if it is a buffered factory
for(AUD_BFIterator i = m_bufferedFactories->begin();
i != m_bufferedFactories->end(); i++)
{
if((*i)->factory == factory)
{
// create the handle
sound = new AUD_OpenALHandle; AUD_NEW("handle")
sound->keep = keep;
sound->current = -1;
sound->isBuffered = true;
sound->data_end = true;
alcSuspendContext(m_context);
// OpenAL playback code
try
{
alGenSources(1, &sound->source);
if(alGetError() != AL_NO_ERROR)
AUD_THROW(AUD_ERROR_OPENAL);
try
{
alSourcei(sound->source, AL_BUFFER, (*i)->buffer);
if(alGetError() != AL_NO_ERROR)
AUD_THROW(AUD_ERROR_OPENAL);
}
catch(AUD_Exception)
{
alDeleteSources(1, &sound->source);
throw;
}
}
catch(AUD_Exception)
{
delete sound; AUD_DELETE("handle")
alcProcessContext(m_context);
throw;
}
// play sound
m_playingSounds->push_back(sound);
alSourcei(sound->source, AL_SOURCE_RELATIVE, 1);
start();
alcProcessContext(m_context);
}
}
}
catch(AUD_Exception)
{
unlock();
throw;
}
unlock();
if(sound)
return sound;
AUD_IReader* reader = factory->createReader();
if(reader == NULL)
AUD_THROW(AUD_ERROR_READER);
AUD_DeviceSpecs specs = m_specs;
specs.specs = reader->getSpecs();
// check format
bool valid = specs.channels != AUD_CHANNELS_INVALID;
if(m_converter)
{
m_converter->setReader(reader);
reader = m_converter->createReader();
}
// create the handle
sound = new AUD_OpenALHandle; AUD_NEW("handle")
sound->keep = keep;
sound->reader = reader;
sound->current = 0;
sound->isBuffered = false;
sound->data_end = false;
valid &= getFormat(sound->format, specs.specs);
if(!valid)
{
delete sound; AUD_DELETE("handle")
delete reader; AUD_DELETE("reader")
return NULL;
}
lock();
alcSuspendContext(m_context);
// OpenAL playback code
try
{
alGenBuffers(AUD_OPENAL_CYCLE_BUFFERS, sound->buffers);
if(alGetError() != AL_NO_ERROR)
AUD_THROW(AUD_ERROR_OPENAL);
try
{
sample_t* buf;
int length;
for(int i = 0; i < AUD_OPENAL_CYCLE_BUFFERS; i++)
{
length = m_buffersize;
reader->read(length, buf);
alBufferData(sound->buffers[i], sound->format, buf,
length * AUD_DEVICE_SAMPLE_SIZE(specs),
specs.rate);
if(alGetError() != AL_NO_ERROR)
AUD_THROW(AUD_ERROR_OPENAL);
}
alGenSources(1, &sound->source);
if(alGetError() != AL_NO_ERROR)
AUD_THROW(AUD_ERROR_OPENAL);
try
{
alSourceQueueBuffers(sound->source, AUD_OPENAL_CYCLE_BUFFERS,
sound->buffers);
if(alGetError() != AL_NO_ERROR)
AUD_THROW(AUD_ERROR_OPENAL);
}
catch(AUD_Exception)
{
alDeleteSources(1, &sound->source);
throw;
}
}
catch(AUD_Exception)
{
alDeleteBuffers(AUD_OPENAL_CYCLE_BUFFERS, sound->buffers);
throw;
}
}
catch(AUD_Exception)
{
delete sound; AUD_DELETE("handle")
delete reader; AUD_DELETE("reader")
alcProcessContext(m_context);
unlock();
throw;
}
// play sound
m_playingSounds->push_back(sound);
alSourcei(sound->source, AL_SOURCE_RELATIVE, 1);
start();
alcProcessContext(m_context);
unlock();
return sound;
}
bool AUD_OpenALDevice::pause(AUD_Handle* handle)
{
bool result = false;
lock();
// only songs that are played can be paused
for(AUD_HandleIterator i = m_playingSounds->begin();
i != m_playingSounds->end(); i++)
{
if(*i == handle)
{
m_pausedSounds->push_back(*i);
alSourcePause((*i)->source);
m_playingSounds->erase(i);
result = true;
break;
}
}
unlock();
return result;
}
bool AUD_OpenALDevice::resume(AUD_Handle* handle)
{
bool result = false;
lock();
// only songs that are paused can be resumed
for(AUD_HandleIterator i = m_pausedSounds->begin();
i != m_pausedSounds->end(); i++)
{
if(*i == handle)
{
m_playingSounds->push_back(*i);
start();
m_pausedSounds->erase(i);
result = true;
break;
}
}
unlock();
return result;
}
bool AUD_OpenALDevice::stop(AUD_Handle* handle)
{
AUD_OpenALHandle* sound;
bool result = false;
lock();
for(AUD_HandleIterator i = m_playingSounds->begin();
i != m_playingSounds->end(); i++)
{
if(*i == handle)
{
sound = *i;
alDeleteSources(1, &sound->source);
if(!sound->isBuffered)
{
delete sound->reader; AUD_DELETE("reader")
alDeleteBuffers(AUD_OPENAL_CYCLE_BUFFERS, sound->buffers);
}
delete *i; AUD_DELETE("handle")
m_playingSounds->erase(i);
result = true;
break;
}
}
if(!result)
{
for(AUD_HandleIterator i = m_pausedSounds->begin();
i != m_pausedSounds->end(); i++)
{
if(*i == handle)
{
sound = *i;
alDeleteSources(1, &sound->source);
if(!sound->isBuffered)
{
delete sound->reader; AUD_DELETE("reader")
alDeleteBuffers(AUD_OPENAL_CYCLE_BUFFERS, sound->buffers);
}
delete *i; AUD_DELETE("handle")
m_pausedSounds->erase(i);
result = true;
break;
}
}
}
unlock();
return result;
}
bool AUD_OpenALDevice::setKeep(AUD_Handle* handle, bool keep)
{
bool result = false;
lock();
if(isValid(handle))
{
((AUD_OpenALHandle*)handle)->keep = keep;
result = true;
}
unlock();
return result;
}
bool AUD_OpenALDevice::sendMessage(AUD_Handle* handle, AUD_Message &message)
{
bool result = false;
lock();
if(handle == 0)
{
for(AUD_HandleIterator i = m_playingSounds->begin();
i != m_playingSounds->end(); i++)
if(!(*i)->isBuffered)
result |= (*i)->reader->notify(message);
for(AUD_HandleIterator i = m_pausedSounds->begin();
i != m_pausedSounds->end(); i++)
if(!(*i)->isBuffered)
result |= (*i)->reader->notify(message);
}
else if(isValid(handle))
if(!((AUD_OpenALHandle*)handle)->isBuffered)
result = ((AUD_OpenALHandle*)handle)->reader->notify(message);
unlock();
return result;
}
bool AUD_OpenALDevice::seek(AUD_Handle* handle, float position)
{
bool result = false;
lock();
if(isValid(handle))
{
AUD_OpenALHandle* alhandle = (AUD_OpenALHandle*)handle;
if(alhandle->isBuffered)
alSourcef(alhandle->source, AL_SEC_OFFSET, position);
else
{
alhandle->reader->seek((int)(position *
alhandle->reader->getSpecs().rate));
alhandle->data_end = false;
ALint info;
alGetSourcei(alhandle->source, AL_SOURCE_STATE, &info);
if(info != AL_PLAYING)
{
if(info == AL_PAUSED)
alSourceStop(alhandle->source);
alSourcei(alhandle->source, AL_BUFFER, 0);
alhandle->current = 0;
ALenum err;
if((err = alGetError()) == AL_NO_ERROR)
{
sample_t* buf;
int length;
AUD_DeviceSpecs specs = m_specs;
specs.specs = alhandle->reader->getSpecs();
for(int i = 0; i < AUD_OPENAL_CYCLE_BUFFERS; i++)
{
length = m_buffersize;
alhandle->reader->read(length, buf);
alBufferData(alhandle->buffers[i], alhandle->format,
buf,
length * AUD_DEVICE_SAMPLE_SIZE(specs),
specs.rate);
if(alGetError() != AL_NO_ERROR)
break;
}
alSourceQueueBuffers(alhandle->source,
AUD_OPENAL_CYCLE_BUFFERS,
alhandle->buffers);
}
alSourceRewind(alhandle->source);
}
}
result = true;
}
unlock();
return result;
}
float AUD_OpenALDevice::getPosition(AUD_Handle* handle)
{
float position = 0.0f;
lock();
if(isValid(handle))
{
AUD_OpenALHandle* h = (AUD_OpenALHandle*)handle;
alGetSourcef(h->source, AL_SEC_OFFSET, &position);
if(!h->isBuffered)
{
AUD_Specs specs = h->reader->getSpecs();
position += (h->reader->getPosition() - m_buffersize *
AUD_OPENAL_CYCLE_BUFFERS) /
(float)specs.rate;
}
}
unlock();
return position;
}
AUD_Status AUD_OpenALDevice::getStatus(AUD_Handle* handle)
{
AUD_Status status = AUD_STATUS_INVALID;
lock();
for(AUD_HandleIterator i = m_playingSounds->begin();
i != m_playingSounds->end(); i++)
{
if(*i == handle)
{
status = AUD_STATUS_PLAYING;
break;
}
}
if(status == AUD_STATUS_INVALID)
{
for(AUD_HandleIterator i = m_pausedSounds->begin();
i != m_pausedSounds->end(); i++)
{
if(*i == handle)
{
status = AUD_STATUS_PAUSED;
break;
}
}
}
unlock();
return status;
}
void AUD_OpenALDevice::lock()
{
pthread_mutex_lock(&m_mutex);
}
void AUD_OpenALDevice::unlock()
{
pthread_mutex_unlock(&m_mutex);
}
/******************************************************************************/
/**************************** Capabilities Code *******************************/
/******************************************************************************/
bool AUD_OpenALDevice::checkCapability(int capability)
{
return capability == AUD_CAPS_3D_DEVICE ||
capability == AUD_CAPS_VOLUME ||
capability == AUD_CAPS_SOURCE_VOLUME ||
capability == AUD_CAPS_SOURCE_PITCH ||
capability == AUD_CAPS_BUFFERED_FACTORY;
}
bool AUD_OpenALDevice::setCapability(int capability, void *value)
{
bool result = false;
switch(capability)
{
case AUD_CAPS_VOLUME:
alListenerf(AL_GAIN, *((float*)value));
return true;
case AUD_CAPS_SOURCE_VOLUME:
{
AUD_SourceCaps* caps = (AUD_SourceCaps*) value;
lock();
if(isValid(caps->handle))
{
alSourcef(((AUD_OpenALHandle*)caps->handle)->source,
AL_GAIN, caps->value);
result = true;
}
unlock();
}
break;
case AUD_CAPS_SOURCE_PITCH:
{
AUD_SourceCaps* caps = (AUD_SourceCaps*) value;
lock();
if(isValid(caps->handle))
{
alSourcef(((AUD_OpenALHandle*)caps->handle)->source,
AL_PITCH, caps->value);
result = true;
}
unlock();
}
break;
case AUD_CAPS_BUFFERED_FACTORY:
{
AUD_IFactory* factory = (AUD_IFactory*) value;
// load the factory into an OpenAL buffer
if(factory)
{
// check if the factory is already buffered
lock();
for(AUD_BFIterator i = m_bufferedFactories->begin();
i != m_bufferedFactories->end(); i++)
{
if((*i)->factory == factory)
{
result = true;
break;
}
}
unlock();
if(result)
return result;
AUD_IReader* reader = factory->createReader();
if(reader == NULL)
return false;
AUD_DeviceSpecs specs = m_specs;
specs.specs = reader->getSpecs();
// determine format
bool valid = reader->getType() == AUD_TYPE_BUFFER;
if(valid)
{
if(m_converter)
{
m_converter->setReader(reader);
reader = m_converter->createReader();
}
}
ALenum format;
if(valid)
valid = getFormat(format, specs.specs);
if(!valid)
{
delete reader; AUD_DELETE("reader")
return false;
}
// load into a buffer
lock();
alcSuspendContext(m_context);
AUD_OpenALBufferedFactory* bf = new AUD_OpenALBufferedFactory;
AUD_NEW("bufferedfactory");
bf->factory = factory;
try
{
alGenBuffers(1, &bf->buffer);
if(alGetError() != AL_NO_ERROR)
AUD_THROW(AUD_ERROR_OPENAL);
try
{
sample_t* buf;
int length = reader->getLength();
reader->read(length, buf);
alBufferData(bf->buffer, format, buf,
length * AUD_DEVICE_SAMPLE_SIZE(specs),
specs.rate);
if(alGetError() != AL_NO_ERROR)
AUD_THROW(AUD_ERROR_OPENAL);
}
catch(AUD_Exception)
{
alDeleteBuffers(1, &bf->buffer);
throw;
}
}
catch(AUD_Exception)
{
delete bf; AUD_DELETE("bufferedfactory")
delete reader; AUD_DELETE("reader")
alcProcessContext(m_context);
unlock();
return false;
}
m_bufferedFactories->push_back(bf);
alcProcessContext(m_context);
unlock();
}
else
{
// stop all playing and paused buffered sources
lock();
alcSuspendContext(m_context);
AUD_OpenALHandle* sound;
AUD_HandleIterator it = m_playingSounds->begin();
while(it != m_playingSounds->end())
{
sound = *it;
++it;
if(sound->isBuffered)
stop(sound);
}
alcProcessContext(m_context);
while(!m_bufferedFactories->empty())
{
alDeleteBuffers(1,
&(*(m_bufferedFactories->begin()))->buffer);
delete *m_bufferedFactories->begin();
AUD_DELETE("bufferedfactory");
m_bufferedFactories->erase(m_bufferedFactories->begin());
}
unlock();
}
return true;
}
break;
}
return result;
}
bool AUD_OpenALDevice::getCapability(int capability, void *value)
{
bool result = false;
switch(capability)
{
case AUD_CAPS_VOLUME:
alGetListenerf(AL_GAIN, (float*)value);
return true;
case AUD_CAPS_SOURCE_VOLUME:
{
AUD_SourceCaps* caps = (AUD_SourceCaps*) value;
lock();
if(isValid(caps->handle))
{
alGetSourcef(((AUD_OpenALHandle*)caps->handle)->source,
AL_GAIN, &caps->value);
result = true;
}
unlock();
}
break;
case AUD_CAPS_SOURCE_PITCH:
{
AUD_SourceCaps* caps = (AUD_SourceCaps*) value;
lock();
if(isValid(caps->handle))
{
alGetSourcef(((AUD_OpenALHandle*)caps->handle)->source,
AL_PITCH, &caps->value);
result = true;
}
unlock();
}
break;
}
return result;
}
/******************************************************************************/
/**************************** 3D Device Code **********************************/
/******************************************************************************/
AUD_Handle* AUD_OpenALDevice::play3D(AUD_IFactory* factory, bool keep)
{
AUD_OpenALHandle* handle = (AUD_OpenALHandle*)play(factory, keep);
if(handle)
alSourcei(handle->source, AL_SOURCE_RELATIVE, 0);
return handle;
}
bool AUD_OpenALDevice::updateListener(AUD_3DData &data)
{
alListenerfv(AL_POSITION, (ALfloat*)data.position);
alListenerfv(AL_VELOCITY, (ALfloat*)data.velocity);
alListenerfv(AL_ORIENTATION, (ALfloat*)&(data.orientation[3]));
return true;
}
bool AUD_OpenALDevice::setSetting(AUD_3DSetting setting, float value)
{
switch(setting)
{
case AUD_3DS_DISTANCE_MODEL:
if(value == AUD_DISTANCE_MODEL_NONE)
alDistanceModel(AL_NONE);
else if(value == AUD_DISTANCE_MODEL_INVERSE)
alDistanceModel(AL_INVERSE_DISTANCE);
else if(value == AUD_DISTANCE_MODEL_INVERSE_CLAMPED)
alDistanceModel(AL_INVERSE_DISTANCE_CLAMPED);
else if(value == AUD_DISTANCE_MODEL_LINEAR)
alDistanceModel(AL_LINEAR_DISTANCE);
else if(value == AUD_DISTANCE_MODEL_LINEAR_CLAMPED)
alDistanceModel(AL_LINEAR_DISTANCE_CLAMPED);
else if(value == AUD_DISTANCE_MODEL_EXPONENT)
alDistanceModel(AL_EXPONENT_DISTANCE);
else if(value == AUD_DISTANCE_MODEL_EXPONENT_CLAMPED)
alDistanceModel(AL_EXPONENT_DISTANCE_CLAMPED);
else
return false;
return true;
case AUD_3DS_DOPPLER_FACTOR:
alDopplerFactor(value);
return true;
case AUD_3DS_SPEED_OF_SOUND:
alSpeedOfSound(value);
return true;
default:
return false;
}
}
float AUD_OpenALDevice::getSetting(AUD_3DSetting setting)
{
switch(setting)
{
case AUD_3DS_DISTANCE_MODEL:
switch(alGetInteger(AL_DISTANCE_MODEL))
{
case AL_NONE:
return AUD_DISTANCE_MODEL_NONE;
case AL_INVERSE_DISTANCE:
return AUD_DISTANCE_MODEL_INVERSE;
case AL_INVERSE_DISTANCE_CLAMPED:
return AUD_DISTANCE_MODEL_INVERSE_CLAMPED;
case AL_LINEAR_DISTANCE:
return AUD_DISTANCE_MODEL_LINEAR;
case AL_LINEAR_DISTANCE_CLAMPED:
return AUD_DISTANCE_MODEL_LINEAR_CLAMPED;
case AL_EXPONENT_DISTANCE:
return AUD_DISTANCE_MODEL_EXPONENT;
case AL_EXPONENT_DISTANCE_CLAMPED:
return AUD_DISTANCE_MODEL_EXPONENT_CLAMPED;
}
case AUD_3DS_DOPPLER_FACTOR:
return alGetFloat(AL_DOPPLER_FACTOR);
case AUD_3DS_SPEED_OF_SOUND:
return alGetFloat(AL_SPEED_OF_SOUND);
default:
return std::numeric_limits::quiet_NaN();
}
}
bool AUD_OpenALDevice::updateSource(AUD_Handle* handle, AUD_3DData &data)
{
bool result = false;
lock();
if(isValid(handle))
{
int source = ((AUD_OpenALHandle*)handle)->source;
alSourcefv(source, AL_POSITION, (ALfloat*)data.position);
alSourcefv(source, AL_VELOCITY, (ALfloat*)data.velocity);
alSourcefv(source, AL_DIRECTION, (ALfloat*)&(data.orientation[3]));
result = true;
}
unlock();
return result;
}
bool AUD_OpenALDevice::setSourceSetting(AUD_Handle* handle,
AUD_3DSourceSetting setting,
float value)
{
lock();
bool result = false;
if(isValid(handle))
{
int source = ((AUD_OpenALHandle*)handle)->source;
switch(setting)
{
case AUD_3DSS_CONE_INNER_ANGLE:
alSourcef(source, AL_CONE_INNER_ANGLE, value);
result = true;
break;
case AUD_3DSS_CONE_OUTER_ANGLE:
alSourcef(source, AL_CONE_OUTER_ANGLE, value);
result = true;
break;
case AUD_3DSS_CONE_OUTER_GAIN:
alSourcef(source, AL_CONE_OUTER_GAIN, value);
result = true;
break;
case AUD_3DSS_IS_RELATIVE:
alSourcei(source, AL_SOURCE_RELATIVE, value > 0.0f);
result = true;
break;
case AUD_3DSS_MAX_DISTANCE:
alSourcef(source, AL_MAX_DISTANCE, value);
result = true;
break;
case AUD_3DSS_MAX_GAIN:
alSourcef(source, AL_MAX_GAIN, value);
result = true;
break;
case AUD_3DSS_MIN_GAIN:
alSourcef(source, AL_MIN_GAIN, value);
result = true;
break;
case AUD_3DSS_REFERENCE_DISTANCE:
alSourcef(source, AL_REFERENCE_DISTANCE, value);
result = true;
break;
case AUD_3DSS_ROLLOFF_FACTOR:
alSourcef(source, AL_ROLLOFF_FACTOR, value);
result = true;
break;
default:
break;
}
}
unlock();
return result;
}
float AUD_OpenALDevice::getSourceSetting(AUD_Handle* handle,
AUD_3DSourceSetting setting)
{
float result = std::numeric_limits::quiet_NaN();;
lock();
if(isValid(handle))
{
int source = ((AUD_OpenALHandle*)handle)->source;
switch(setting)
{
case AUD_3DSS_CONE_INNER_ANGLE:
alGetSourcef(source, AL_CONE_INNER_ANGLE, &result);
break;
case AUD_3DSS_CONE_OUTER_ANGLE:
alGetSourcef(source, AL_CONE_OUTER_ANGLE, &result);
break;
case AUD_3DSS_CONE_OUTER_GAIN:
alGetSourcef(source, AL_CONE_OUTER_GAIN, &result);
break;
case AUD_3DSS_IS_RELATIVE:
{
ALint i;
alGetSourcei(source, AL_SOURCE_RELATIVE, &i);
result = i ? 1.0f : 0.0f;
break;
}
case AUD_3DSS_MAX_DISTANCE:
alGetSourcef(source, AL_MAX_DISTANCE, &result);
break;
case AUD_3DSS_MAX_GAIN:
alGetSourcef(source, AL_MAX_GAIN, &result);
break;
case AUD_3DSS_MIN_GAIN:
alGetSourcef(source, AL_MIN_GAIN, &result);
break;
case AUD_3DSS_REFERENCE_DISTANCE:
alGetSourcef(source, AL_REFERENCE_DISTANCE, &result);
break;
case AUD_3DSS_ROLLOFF_FACTOR:
alGetSourcef(source, AL_ROLLOFF_FACTOR, &result);
break;
default:
break;
}
}
unlock();
return result;
}