/* * $Id: AUD_OpenALDevice.cpp 27180 2010-02-28 08:53:08Z nexyon $ * * ***** BEGIN LGPL LICENSE BLOCK ***** * * Copyright 2009 Jörg Hermann Müller * * This file is part of AudaSpace. * * AudaSpace is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * AudaSpace is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with AudaSpace. If not, see . * * ***** END LGPL LICENSE BLOCK ***** */ #include "AUD_OpenALDevice.h" #include "AUD_IReader.h" #include "AUD_ConverterFactory.h" #include "AUD_SourceCaps.h" #include #include #ifdef WIN32 #include #else #include #endif #define AUD_OPENAL_CYCLE_BUFFERS 3 /// Saves the data for playback. struct AUD_OpenALHandle : AUD_Handle { /// Whether it's a buffered or a streamed source. bool isBuffered; /// The reader source. AUD_IReader* reader; /// Whether to keep the source if end of it is reached. bool keep; /// OpenAL sample format. ALenum format; /// OpenAL source. ALuint source; /// OpenAL buffers. ALuint buffers[AUD_OPENAL_CYCLE_BUFFERS]; /// The first buffer to be read next. int current; /// Whether the stream doesn't return any more data. bool data_end; }; struct AUD_OpenALBufferedFactory { /// The factory. AUD_IFactory* factory; /// The OpenAL buffer. ALuint buffer; }; typedef std::list::iterator AUD_HandleIterator; typedef std::list::iterator AUD_BFIterator; /******************************************************************************/ /**************************** Threading Code **********************************/ /******************************************************************************/ void* AUD_openalRunThread(void* device) { AUD_OpenALDevice* dev = (AUD_OpenALDevice*)device; dev->updateStreams(); return NULL; } void AUD_OpenALDevice::start() { lock(); if(!m_playing) { pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE); pthread_create(&m_thread, &attr, AUD_openalRunThread, this); pthread_attr_destroy(&attr); m_playing = true; } unlock(); } void AUD_OpenALDevice::updateStreams() { AUD_OpenALHandle* sound; int length; sample_t* buffer; ALint info; AUD_DeviceSpecs specs = m_specs; while(1) { lock(); alcSuspendContext(m_context); { // for all sounds AUD_HandleIterator it = m_playingSounds->begin(); while(it != m_playingSounds->end()) { sound = *it; // increment the iterator to make sure it's valid, // in case the sound gets deleted after stopping ++it; // is it a streamed sound? if(!sound->isBuffered) { // check for buffer refilling alGetSourcei(sound->source, AL_BUFFERS_PROCESSED, &info); if(info) { specs.specs = sound->reader->getSpecs(); // for all empty buffers while(info--) { // if there's still data to play back if(!sound->data_end) { // read data length = m_buffersize; sound->reader->read(length, buffer); // read nothing? if(length == 0) { sound->data_end = true; break; } // unqueue buffer alSourceUnqueueBuffers(sound->source, 1, &sound->buffers[sound->current]); ALenum err; if((err = alGetError()) != AL_NO_ERROR) { sound->data_end = true; break; } // fill with new data alBufferData(sound->buffers[sound->current], sound->format, buffer, length * AUD_DEVICE_SAMPLE_SIZE(specs), specs.rate); if((err = alGetError()) != AL_NO_ERROR) { sound->data_end = true; break; } // and queue again alSourceQueueBuffers(sound->source, 1, &sound->buffers[sound->current]); if(alGetError() != AL_NO_ERROR) { sound->data_end = true; break; } sound->current = (sound->current+1) % AUD_OPENAL_CYCLE_BUFFERS; } else break; } } } // check if the sound has been stopped alGetSourcei(sound->source, AL_SOURCE_STATE, &info); if(info != AL_PLAYING) { // if it really stopped if(sound->data_end) { // pause or if(sound->keep) pause(sound); // stop else stop(sound); } // continue playing else alSourcePlay(sound->source); } } } alcProcessContext(m_context); // stop thread if(m_playingSounds->empty()) { unlock(); m_playing = false; pthread_exit(NULL); } unlock(); #ifdef WIN32 Sleep(20); #else usleep(20000); #endif } } /******************************************************************************/ /**************************** IDevice Code ************************************/ /******************************************************************************/ bool AUD_OpenALDevice::isValid(AUD_Handle* handle) { for(AUD_HandleIterator i = m_playingSounds->begin(); i != m_playingSounds->end(); i++) if(*i == handle) return true; for(AUD_HandleIterator i = m_pausedSounds->begin(); i != m_pausedSounds->end(); i++) if(*i == handle) return true; return false; } AUD_OpenALDevice::AUD_OpenALDevice(AUD_DeviceSpecs specs, int buffersize) { // cannot determine how many channels or which format OpenAL uses, but // it at least is able to play 16 bit stereo audio specs.channels = AUD_CHANNELS_STEREO; specs.format = AUD_FORMAT_S16; #if 0 if(alcIsExtensionPresent(NULL, "ALC_ENUMERATION_EXT") == AL_TRUE) { ALCchar* devices = const_cast(alcGetString(NULL, ALC_DEVICE_SPECIFIER)); printf("OpenAL devices (standard is: %s):\n", alcGetString(NULL, ALC_DEFAULT_DEVICE_SPECIFIER)); while(*devices) { printf("%s\n", devices); devices += strlen(devices) + 1; } } #endif m_device = alcOpenDevice(NULL); if(!m_device) AUD_THROW(AUD_ERROR_OPENAL); // at least try to set the frequency ALCint attribs[] = { ALC_FREQUENCY, specs.rate, 0 }; ALCint* attributes = attribs; if(specs.rate == AUD_RATE_INVALID) attributes = NULL; m_context = alcCreateContext(m_device, attributes); alcMakeContextCurrent(m_context); alcGetIntegerv(m_device, ALC_FREQUENCY, 1, (ALCint*)&specs.rate); // check for specific formats and channel counts to be played back if(alIsExtensionPresent("AL_EXT_FLOAT32") == AL_TRUE) { specs.format = AUD_FORMAT_FLOAT32; m_converter = NULL; } else m_converter = new AUD_ConverterFactory(specs); AUD_NEW("factory") m_useMC = alIsExtensionPresent("AL_EXT_MCFORMATS") == AL_TRUE; alGetError(); m_specs = specs; m_buffersize = buffersize; m_playing = false; m_playingSounds = new std::list(); AUD_NEW("list") m_pausedSounds = new std::list(); AUD_NEW("list") m_bufferedFactories = new std::list(); AUD_NEW("list") pthread_mutexattr_t attr; pthread_mutexattr_init(&attr); pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE); pthread_mutex_init(&m_mutex, &attr); pthread_mutexattr_destroy(&attr); } AUD_OpenALDevice::~AUD_OpenALDevice() { AUD_OpenALHandle* sound; lock(); alcSuspendContext(m_context); // delete all playing sounds while(!m_playingSounds->empty()) { sound = *(m_playingSounds->begin()); alDeleteSources(1, &sound->source); if(!sound->isBuffered) { delete sound->reader; AUD_DELETE("reader") alDeleteBuffers(AUD_OPENAL_CYCLE_BUFFERS, sound->buffers); } delete sound; AUD_DELETE("handle") m_playingSounds->erase(m_playingSounds->begin()); } // delete all paused sounds while(!m_pausedSounds->empty()) { sound = *(m_pausedSounds->begin()); alDeleteSources(1, &sound->source); if(!sound->isBuffered) { delete sound->reader; AUD_DELETE("reader") alDeleteBuffers(AUD_OPENAL_CYCLE_BUFFERS, sound->buffers); } delete sound; AUD_DELETE("handle") m_pausedSounds->erase(m_pausedSounds->begin()); } // delete all buffered factories while(!m_bufferedFactories->empty()) { alDeleteBuffers(1, &(*(m_bufferedFactories->begin()))->buffer); delete *m_bufferedFactories->begin(); AUD_DELETE("bufferedfactory"); m_bufferedFactories->erase(m_bufferedFactories->begin()); } alcProcessContext(m_context); // wait for the thread to stop if(m_playing) { unlock(); pthread_join(m_thread, NULL); } else unlock(); delete m_playingSounds; AUD_DELETE("list") delete m_pausedSounds; AUD_DELETE("list") delete m_bufferedFactories; AUD_DELETE("list") // quit OpenAL alcMakeContextCurrent(NULL); alcDestroyContext(m_context); alcCloseDevice(m_device); if(m_converter) delete m_converter; AUD_DELETE("factory") pthread_mutex_destroy(&m_mutex); } AUD_DeviceSpecs AUD_OpenALDevice::getSpecs() { return m_specs; } bool AUD_OpenALDevice::getFormat(ALenum &format, AUD_Specs specs) { bool valid = true; format = 0; switch(m_specs.format) { case AUD_FORMAT_S16: switch(specs.channels) { case AUD_CHANNELS_MONO: format = AL_FORMAT_MONO16; break; case AUD_CHANNELS_STEREO: format = AL_FORMAT_STEREO16; break; case AUD_CHANNELS_SURROUND4: if(m_useMC) { format = alGetEnumValue("AL_FORMAT_QUAD16"); break; } case AUD_CHANNELS_SURROUND51: if(m_useMC) { format = alGetEnumValue("AL_FORMAT_51CHN16"); break; } case AUD_CHANNELS_SURROUND61: if(m_useMC) { format = alGetEnumValue("AL_FORMAT_61CHN16"); break; } case AUD_CHANNELS_SURROUND71: if(m_useMC) { format = alGetEnumValue("AL_FORMAT_71CHN16"); break; } default: valid = false; } break; case AUD_FORMAT_FLOAT32: switch(specs.channels) { case AUD_CHANNELS_MONO: format = alGetEnumValue("AL_FORMAT_MONO_FLOAT32"); break; case AUD_CHANNELS_STEREO: format = alGetEnumValue("AL_FORMAT_STEREO_FLOAT32"); break; case AUD_CHANNELS_SURROUND4: if(m_useMC) { format = alGetEnumValue("AL_FORMAT_QUAD32"); break; } case AUD_CHANNELS_SURROUND51: if(m_useMC) { format = alGetEnumValue("AL_FORMAT_51CHN32"); break; } case AUD_CHANNELS_SURROUND61: if(m_useMC) { format = alGetEnumValue("AL_FORMAT_61CHN32"); break; } case AUD_CHANNELS_SURROUND71: if(m_useMC) { format = alGetEnumValue("AL_FORMAT_71CHN32"); break; } default: valid = false; } break; default: valid = false; } if(!format) valid = false; return valid; } AUD_Handle* AUD_OpenALDevice::play(AUD_IFactory* factory, bool keep) { lock(); AUD_OpenALHandle* sound = NULL; try { // check if it is a buffered factory for(AUD_BFIterator i = m_bufferedFactories->begin(); i != m_bufferedFactories->end(); i++) { if((*i)->factory == factory) { // create the handle sound = new AUD_OpenALHandle; AUD_NEW("handle") sound->keep = keep; sound->current = -1; sound->isBuffered = true; sound->data_end = true; alcSuspendContext(m_context); // OpenAL playback code try { alGenSources(1, &sound->source); if(alGetError() != AL_NO_ERROR) AUD_THROW(AUD_ERROR_OPENAL); try { alSourcei(sound->source, AL_BUFFER, (*i)->buffer); if(alGetError() != AL_NO_ERROR) AUD_THROW(AUD_ERROR_OPENAL); } catch(AUD_Exception) { alDeleteSources(1, &sound->source); throw; } } catch(AUD_Exception) { delete sound; AUD_DELETE("handle") alcProcessContext(m_context); throw; } // play sound m_playingSounds->push_back(sound); alSourcei(sound->source, AL_SOURCE_RELATIVE, 1); start(); alcProcessContext(m_context); } } } catch(AUD_Exception) { unlock(); throw; } unlock(); if(sound) return sound; AUD_IReader* reader = factory->createReader(); if(reader == NULL) AUD_THROW(AUD_ERROR_READER); AUD_DeviceSpecs specs = m_specs; specs.specs = reader->getSpecs(); // check format bool valid = specs.channels != AUD_CHANNELS_INVALID; if(m_converter) { m_converter->setReader(reader); reader = m_converter->createReader(); } // create the handle sound = new AUD_OpenALHandle; AUD_NEW("handle") sound->keep = keep; sound->reader = reader; sound->current = 0; sound->isBuffered = false; sound->data_end = false; valid &= getFormat(sound->format, specs.specs); if(!valid) { delete sound; AUD_DELETE("handle") delete reader; AUD_DELETE("reader") return NULL; } lock(); alcSuspendContext(m_context); // OpenAL playback code try { alGenBuffers(AUD_OPENAL_CYCLE_BUFFERS, sound->buffers); if(alGetError() != AL_NO_ERROR) AUD_THROW(AUD_ERROR_OPENAL); try { sample_t* buf; int length; for(int i = 0; i < AUD_OPENAL_CYCLE_BUFFERS; i++) { length = m_buffersize; reader->read(length, buf); alBufferData(sound->buffers[i], sound->format, buf, length * AUD_DEVICE_SAMPLE_SIZE(specs), specs.rate); if(alGetError() != AL_NO_ERROR) AUD_THROW(AUD_ERROR_OPENAL); } alGenSources(1, &sound->source); if(alGetError() != AL_NO_ERROR) AUD_THROW(AUD_ERROR_OPENAL); try { alSourceQueueBuffers(sound->source, AUD_OPENAL_CYCLE_BUFFERS, sound->buffers); if(alGetError() != AL_NO_ERROR) AUD_THROW(AUD_ERROR_OPENAL); } catch(AUD_Exception) { alDeleteSources(1, &sound->source); throw; } } catch(AUD_Exception) { alDeleteBuffers(AUD_OPENAL_CYCLE_BUFFERS, sound->buffers); throw; } } catch(AUD_Exception) { delete sound; AUD_DELETE("handle") delete reader; AUD_DELETE("reader") alcProcessContext(m_context); unlock(); throw; } // play sound m_playingSounds->push_back(sound); alSourcei(sound->source, AL_SOURCE_RELATIVE, 1); start(); alcProcessContext(m_context); unlock(); return sound; } bool AUD_OpenALDevice::pause(AUD_Handle* handle) { bool result = false; lock(); // only songs that are played can be paused for(AUD_HandleIterator i = m_playingSounds->begin(); i != m_playingSounds->end(); i++) { if(*i == handle) { m_pausedSounds->push_back(*i); alSourcePause((*i)->source); m_playingSounds->erase(i); result = true; break; } } unlock(); return result; } bool AUD_OpenALDevice::resume(AUD_Handle* handle) { bool result = false; lock(); // only songs that are paused can be resumed for(AUD_HandleIterator i = m_pausedSounds->begin(); i != m_pausedSounds->end(); i++) { if(*i == handle) { m_playingSounds->push_back(*i); start(); m_pausedSounds->erase(i); result = true; break; } } unlock(); return result; } bool AUD_OpenALDevice::stop(AUD_Handle* handle) { AUD_OpenALHandle* sound; bool result = false; lock(); for(AUD_HandleIterator i = m_playingSounds->begin(); i != m_playingSounds->end(); i++) { if(*i == handle) { sound = *i; alDeleteSources(1, &sound->source); if(!sound->isBuffered) { delete sound->reader; AUD_DELETE("reader") alDeleteBuffers(AUD_OPENAL_CYCLE_BUFFERS, sound->buffers); } delete *i; AUD_DELETE("handle") m_playingSounds->erase(i); result = true; break; } } if(!result) { for(AUD_HandleIterator i = m_pausedSounds->begin(); i != m_pausedSounds->end(); i++) { if(*i == handle) { sound = *i; alDeleteSources(1, &sound->source); if(!sound->isBuffered) { delete sound->reader; AUD_DELETE("reader") alDeleteBuffers(AUD_OPENAL_CYCLE_BUFFERS, sound->buffers); } delete *i; AUD_DELETE("handle") m_pausedSounds->erase(i); result = true; break; } } } unlock(); return result; } bool AUD_OpenALDevice::setKeep(AUD_Handle* handle, bool keep) { bool result = false; lock(); if(isValid(handle)) { ((AUD_OpenALHandle*)handle)->keep = keep; result = true; } unlock(); return result; } bool AUD_OpenALDevice::sendMessage(AUD_Handle* handle, AUD_Message &message) { bool result = false; lock(); if(handle == 0) { for(AUD_HandleIterator i = m_playingSounds->begin(); i != m_playingSounds->end(); i++) if(!(*i)->isBuffered) result |= (*i)->reader->notify(message); for(AUD_HandleIterator i = m_pausedSounds->begin(); i != m_pausedSounds->end(); i++) if(!(*i)->isBuffered) result |= (*i)->reader->notify(message); } else if(isValid(handle)) if(!((AUD_OpenALHandle*)handle)->isBuffered) result = ((AUD_OpenALHandle*)handle)->reader->notify(message); unlock(); return result; } bool AUD_OpenALDevice::seek(AUD_Handle* handle, float position) { bool result = false; lock(); if(isValid(handle)) { AUD_OpenALHandle* alhandle = (AUD_OpenALHandle*)handle; if(alhandle->isBuffered) alSourcef(alhandle->source, AL_SEC_OFFSET, position); else { alhandle->reader->seek((int)(position * alhandle->reader->getSpecs().rate)); alhandle->data_end = false; ALint info; alGetSourcei(alhandle->source, AL_SOURCE_STATE, &info); if(info != AL_PLAYING) { if(info == AL_PAUSED) alSourceStop(alhandle->source); alSourcei(alhandle->source, AL_BUFFER, 0); alhandle->current = 0; ALenum err; if((err = alGetError()) == AL_NO_ERROR) { sample_t* buf; int length; AUD_DeviceSpecs specs = m_specs; specs.specs = alhandle->reader->getSpecs(); for(int i = 0; i < AUD_OPENAL_CYCLE_BUFFERS; i++) { length = m_buffersize; alhandle->reader->read(length, buf); alBufferData(alhandle->buffers[i], alhandle->format, buf, length * AUD_DEVICE_SAMPLE_SIZE(specs), specs.rate); if(alGetError() != AL_NO_ERROR) break; } alSourceQueueBuffers(alhandle->source, AUD_OPENAL_CYCLE_BUFFERS, alhandle->buffers); } alSourceRewind(alhandle->source); } } result = true; } unlock(); return result; } float AUD_OpenALDevice::getPosition(AUD_Handle* handle) { float position = 0.0f; lock(); if(isValid(handle)) { AUD_OpenALHandle* h = (AUD_OpenALHandle*)handle; alGetSourcef(h->source, AL_SEC_OFFSET, &position); if(!h->isBuffered) { AUD_Specs specs = h->reader->getSpecs(); position += (h->reader->getPosition() - m_buffersize * AUD_OPENAL_CYCLE_BUFFERS) / (float)specs.rate; } } unlock(); return position; } AUD_Status AUD_OpenALDevice::getStatus(AUD_Handle* handle) { AUD_Status status = AUD_STATUS_INVALID; lock(); for(AUD_HandleIterator i = m_playingSounds->begin(); i != m_playingSounds->end(); i++) { if(*i == handle) { status = AUD_STATUS_PLAYING; break; } } if(status == AUD_STATUS_INVALID) { for(AUD_HandleIterator i = m_pausedSounds->begin(); i != m_pausedSounds->end(); i++) { if(*i == handle) { status = AUD_STATUS_PAUSED; break; } } } unlock(); return status; } void AUD_OpenALDevice::lock() { pthread_mutex_lock(&m_mutex); } void AUD_OpenALDevice::unlock() { pthread_mutex_unlock(&m_mutex); } /******************************************************************************/ /**************************** Capabilities Code *******************************/ /******************************************************************************/ bool AUD_OpenALDevice::checkCapability(int capability) { return capability == AUD_CAPS_3D_DEVICE || capability == AUD_CAPS_VOLUME || capability == AUD_CAPS_SOURCE_VOLUME || capability == AUD_CAPS_SOURCE_PITCH || capability == AUD_CAPS_BUFFERED_FACTORY; } bool AUD_OpenALDevice::setCapability(int capability, void *value) { bool result = false; switch(capability) { case AUD_CAPS_VOLUME: alListenerf(AL_GAIN, *((float*)value)); return true; case AUD_CAPS_SOURCE_VOLUME: { AUD_SourceCaps* caps = (AUD_SourceCaps*) value; lock(); if(isValid(caps->handle)) { alSourcef(((AUD_OpenALHandle*)caps->handle)->source, AL_GAIN, caps->value); result = true; } unlock(); } break; case AUD_CAPS_SOURCE_PITCH: { AUD_SourceCaps* caps = (AUD_SourceCaps*) value; lock(); if(isValid(caps->handle)) { alSourcef(((AUD_OpenALHandle*)caps->handle)->source, AL_PITCH, caps->value); result = true; } unlock(); } break; case AUD_CAPS_BUFFERED_FACTORY: { AUD_IFactory* factory = (AUD_IFactory*) value; // load the factory into an OpenAL buffer if(factory) { // check if the factory is already buffered lock(); for(AUD_BFIterator i = m_bufferedFactories->begin(); i != m_bufferedFactories->end(); i++) { if((*i)->factory == factory) { result = true; break; } } unlock(); if(result) return result; AUD_IReader* reader = factory->createReader(); if(reader == NULL) return false; AUD_DeviceSpecs specs = m_specs; specs.specs = reader->getSpecs(); // determine format bool valid = reader->getType() == AUD_TYPE_BUFFER; if(valid) { if(m_converter) { m_converter->setReader(reader); reader = m_converter->createReader(); } } ALenum format; if(valid) valid = getFormat(format, specs.specs); if(!valid) { delete reader; AUD_DELETE("reader") return false; } // load into a buffer lock(); alcSuspendContext(m_context); AUD_OpenALBufferedFactory* bf = new AUD_OpenALBufferedFactory; AUD_NEW("bufferedfactory"); bf->factory = factory; try { alGenBuffers(1, &bf->buffer); if(alGetError() != AL_NO_ERROR) AUD_THROW(AUD_ERROR_OPENAL); try { sample_t* buf; int length = reader->getLength(); reader->read(length, buf); alBufferData(bf->buffer, format, buf, length * AUD_DEVICE_SAMPLE_SIZE(specs), specs.rate); if(alGetError() != AL_NO_ERROR) AUD_THROW(AUD_ERROR_OPENAL); } catch(AUD_Exception) { alDeleteBuffers(1, &bf->buffer); throw; } } catch(AUD_Exception) { delete bf; AUD_DELETE("bufferedfactory") delete reader; AUD_DELETE("reader") alcProcessContext(m_context); unlock(); return false; } m_bufferedFactories->push_back(bf); alcProcessContext(m_context); unlock(); } else { // stop all playing and paused buffered sources lock(); alcSuspendContext(m_context); AUD_OpenALHandle* sound; AUD_HandleIterator it = m_playingSounds->begin(); while(it != m_playingSounds->end()) { sound = *it; ++it; if(sound->isBuffered) stop(sound); } alcProcessContext(m_context); while(!m_bufferedFactories->empty()) { alDeleteBuffers(1, &(*(m_bufferedFactories->begin()))->buffer); delete *m_bufferedFactories->begin(); AUD_DELETE("bufferedfactory"); m_bufferedFactories->erase(m_bufferedFactories->begin()); } unlock(); } return true; } break; } return result; } bool AUD_OpenALDevice::getCapability(int capability, void *value) { bool result = false; switch(capability) { case AUD_CAPS_VOLUME: alGetListenerf(AL_GAIN, (float*)value); return true; case AUD_CAPS_SOURCE_VOLUME: { AUD_SourceCaps* caps = (AUD_SourceCaps*) value; lock(); if(isValid(caps->handle)) { alGetSourcef(((AUD_OpenALHandle*)caps->handle)->source, AL_GAIN, &caps->value); result = true; } unlock(); } break; case AUD_CAPS_SOURCE_PITCH: { AUD_SourceCaps* caps = (AUD_SourceCaps*) value; lock(); if(isValid(caps->handle)) { alGetSourcef(((AUD_OpenALHandle*)caps->handle)->source, AL_PITCH, &caps->value); result = true; } unlock(); } break; } return result; } /******************************************************************************/ /**************************** 3D Device Code **********************************/ /******************************************************************************/ AUD_Handle* AUD_OpenALDevice::play3D(AUD_IFactory* factory, bool keep) { AUD_OpenALHandle* handle = (AUD_OpenALHandle*)play(factory, keep); if(handle) alSourcei(handle->source, AL_SOURCE_RELATIVE, 0); return handle; } bool AUD_OpenALDevice::updateListener(AUD_3DData &data) { alListenerfv(AL_POSITION, (ALfloat*)data.position); alListenerfv(AL_VELOCITY, (ALfloat*)data.velocity); alListenerfv(AL_ORIENTATION, (ALfloat*)&(data.orientation[3])); return true; } bool AUD_OpenALDevice::setSetting(AUD_3DSetting setting, float value) { switch(setting) { case AUD_3DS_DISTANCE_MODEL: if(value == AUD_DISTANCE_MODEL_NONE) alDistanceModel(AL_NONE); else if(value == AUD_DISTANCE_MODEL_INVERSE) alDistanceModel(AL_INVERSE_DISTANCE); else if(value == AUD_DISTANCE_MODEL_INVERSE_CLAMPED) alDistanceModel(AL_INVERSE_DISTANCE_CLAMPED); else if(value == AUD_DISTANCE_MODEL_LINEAR) alDistanceModel(AL_LINEAR_DISTANCE); else if(value == AUD_DISTANCE_MODEL_LINEAR_CLAMPED) alDistanceModel(AL_LINEAR_DISTANCE_CLAMPED); else if(value == AUD_DISTANCE_MODEL_EXPONENT) alDistanceModel(AL_EXPONENT_DISTANCE); else if(value == AUD_DISTANCE_MODEL_EXPONENT_CLAMPED) alDistanceModel(AL_EXPONENT_DISTANCE_CLAMPED); else return false; return true; case AUD_3DS_DOPPLER_FACTOR: alDopplerFactor(value); return true; case AUD_3DS_SPEED_OF_SOUND: alSpeedOfSound(value); return true; default: return false; } } float AUD_OpenALDevice::getSetting(AUD_3DSetting setting) { switch(setting) { case AUD_3DS_DISTANCE_MODEL: switch(alGetInteger(AL_DISTANCE_MODEL)) { case AL_NONE: return AUD_DISTANCE_MODEL_NONE; case AL_INVERSE_DISTANCE: return AUD_DISTANCE_MODEL_INVERSE; case AL_INVERSE_DISTANCE_CLAMPED: return AUD_DISTANCE_MODEL_INVERSE_CLAMPED; case AL_LINEAR_DISTANCE: return AUD_DISTANCE_MODEL_LINEAR; case AL_LINEAR_DISTANCE_CLAMPED: return AUD_DISTANCE_MODEL_LINEAR_CLAMPED; case AL_EXPONENT_DISTANCE: return AUD_DISTANCE_MODEL_EXPONENT; case AL_EXPONENT_DISTANCE_CLAMPED: return AUD_DISTANCE_MODEL_EXPONENT_CLAMPED; } case AUD_3DS_DOPPLER_FACTOR: return alGetFloat(AL_DOPPLER_FACTOR); case AUD_3DS_SPEED_OF_SOUND: return alGetFloat(AL_SPEED_OF_SOUND); default: return std::numeric_limits::quiet_NaN(); } } bool AUD_OpenALDevice::updateSource(AUD_Handle* handle, AUD_3DData &data) { bool result = false; lock(); if(isValid(handle)) { int source = ((AUD_OpenALHandle*)handle)->source; alSourcefv(source, AL_POSITION, (ALfloat*)data.position); alSourcefv(source, AL_VELOCITY, (ALfloat*)data.velocity); alSourcefv(source, AL_DIRECTION, (ALfloat*)&(data.orientation[3])); result = true; } unlock(); return result; } bool AUD_OpenALDevice::setSourceSetting(AUD_Handle* handle, AUD_3DSourceSetting setting, float value) { lock(); bool result = false; if(isValid(handle)) { int source = ((AUD_OpenALHandle*)handle)->source; switch(setting) { case AUD_3DSS_CONE_INNER_ANGLE: alSourcef(source, AL_CONE_INNER_ANGLE, value); result = true; break; case AUD_3DSS_CONE_OUTER_ANGLE: alSourcef(source, AL_CONE_OUTER_ANGLE, value); result = true; break; case AUD_3DSS_CONE_OUTER_GAIN: alSourcef(source, AL_CONE_OUTER_GAIN, value); result = true; break; case AUD_3DSS_IS_RELATIVE: alSourcei(source, AL_SOURCE_RELATIVE, value > 0.0f); result = true; break; case AUD_3DSS_MAX_DISTANCE: alSourcef(source, AL_MAX_DISTANCE, value); result = true; break; case AUD_3DSS_MAX_GAIN: alSourcef(source, AL_MAX_GAIN, value); result = true; break; case AUD_3DSS_MIN_GAIN: alSourcef(source, AL_MIN_GAIN, value); result = true; break; case AUD_3DSS_REFERENCE_DISTANCE: alSourcef(source, AL_REFERENCE_DISTANCE, value); result = true; break; case AUD_3DSS_ROLLOFF_FACTOR: alSourcef(source, AL_ROLLOFF_FACTOR, value); result = true; break; default: break; } } unlock(); return result; } float AUD_OpenALDevice::getSourceSetting(AUD_Handle* handle, AUD_3DSourceSetting setting) { float result = std::numeric_limits::quiet_NaN();; lock(); if(isValid(handle)) { int source = ((AUD_OpenALHandle*)handle)->source; switch(setting) { case AUD_3DSS_CONE_INNER_ANGLE: alGetSourcef(source, AL_CONE_INNER_ANGLE, &result); break; case AUD_3DSS_CONE_OUTER_ANGLE: alGetSourcef(source, AL_CONE_OUTER_ANGLE, &result); break; case AUD_3DSS_CONE_OUTER_GAIN: alGetSourcef(source, AL_CONE_OUTER_GAIN, &result); break; case AUD_3DSS_IS_RELATIVE: { ALint i; alGetSourcei(source, AL_SOURCE_RELATIVE, &i); result = i ? 1.0f : 0.0f; break; } case AUD_3DSS_MAX_DISTANCE: alGetSourcef(source, AL_MAX_DISTANCE, &result); break; case AUD_3DSS_MAX_GAIN: alGetSourcef(source, AL_MAX_GAIN, &result); break; case AUD_3DSS_MIN_GAIN: alGetSourcef(source, AL_MIN_GAIN, &result); break; case AUD_3DSS_REFERENCE_DISTANCE: alGetSourcef(source, AL_REFERENCE_DISTANCE, &result); break; case AUD_3DSS_ROLLOFF_FACTOR: alGetSourcef(source, AL_ROLLOFF_FACTOR, &result); break; default: break; } } unlock(); return result; }