# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # import bpy from math import atan, pi, degrees import subprocess import os import sys import time import platform as pltfrm if pltfrm.architecture()[0] == '64bit': bitness = 64 else: bitness = 32 def write_pov(filename, scene=None, info_callback=None): file = open(filename, 'w') # Only for testing if not scene: scene = bpy.data.scenes[0] render = scene.render world = scene.world def uniqueName(name, nameSeq): if name not in nameSeq: return name name_orig = name i = 1 while name in nameSeq: name = '%s_%.3d' % (name_orig, i) i += 1 return name def writeMatrix(matrix): file.write('\tmatrix <%.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f>\n' %\ (matrix[0][0], matrix[0][1], matrix[0][2], matrix[1][0], matrix[1][1], matrix[1][2], matrix[2][0], matrix[2][1], matrix[2][2], matrix[3][0], matrix[3][1], matrix[3][2])) def writeObjectMaterial(material): if material and material.transparency_method == 'RAYTRACE': file.write('\tinterior { ior %.6f }\n' % material.raytrace_transparency.ior) # Other interior args # fade_distance 2 # fade_power [Value] # fade_color # dispersion # dispersion_samples materialNames = {} DEF_MAT_NAME = 'Default' def writeMaterial(material): # Assumes only called once on each material if material: name_orig = material.name else: name_orig = DEF_MAT_NAME name = materialNames[name_orig] = uniqueName(bpy.utils.clean_name(name_orig), materialNames) file.write('#declare %s = finish {\n' % name) if material: file.write('\tdiffuse %.3g\n' % material.diffuse_intensity) file.write('\tspecular %.3g\n' % material.specular_intensity) file.write('\tambient %.3g\n' % material.ambient) #file.write('\tambient rgb <%.3g, %.3g, %.3g>\n' % tuple([c*material.ambient for c in world.ambient_color])) # povray blends the global value # map hardness between 0.0 and 1.0 roughness = ((1.0 - ((material.specular_hardness - 1.0) / 510.0))) # scale from 0.0 to 0.1 roughness *= 0.1 # add a small value because 0.0 is invalid roughness += (1 / 511.0) file.write('\troughness %.3g\n' % roughness) # 'phong 70.0 ' if material.raytrace_mirror.enabled: raytrace_mirror = material.raytrace_mirror if raytrace_mirror.reflect_factor: file.write('\treflection {\n') file.write('\t\trgb <%.3g, %.3g, %.3g>' % tuple(material.mirror_color)) file.write('\t\tfresnel 1 falloff %.3g exponent %.3g metallic %.3g} ' % (raytrace_mirror.fresnel, raytrace_mirror.fresnel_factor, raytrace_mirror.reflect_factor)) else: file.write('\tdiffuse 0.8\n') file.write('\tspecular 0.2\n') # This is written into the object ''' if material and material.transparency_method=='RAYTRACE': 'interior { ior %.3g} ' % material.raytrace_transparency.ior ''' #file.write('\t\t\tcrand 1.0\n') # Sand granyness #file.write('\t\t\tmetallic %.6f\n' % material.spec) #file.write('\t\t\tphong %.6f\n' % material.spec) #file.write('\t\t\tphong_size %.6f\n' % material.spec) #file.write('\t\t\tbrilliance %.6f ' % (material.specular_hardness/256.0) # Like hardness file.write('}\n') def exportCamera(): camera = scene.camera matrix = camera.matrix_world # compute resolution Qsize = float(render.resolution_x) / float(render.resolution_y) file.write('camera {\n') file.write('\tlocation <0, 0, 0>\n') file.write('\tlook_at <0, 0, -1>\n') file.write('\tright <%s, 0, 0>\n' % - Qsize) file.write('\tup <0, 1, 0>\n') file.write('\tangle %f \n' % (360.0 * atan(16.0 / camera.data.lens) / pi)) file.write('\trotate <%.6f, %.6f, %.6f>\n' % tuple([degrees(e) for e in matrix.rotation_part().to_euler()])) file.write('\ttranslate <%.6f, %.6f, %.6f>\n' % (matrix[3][0], matrix[3][1], matrix[3][2])) file.write('}\n') def exportLamps(lamps): # Get all lamps for ob in lamps: lamp = ob.data matrix = ob.matrix_world color = tuple([c * lamp.energy for c in lamp.color]) # Colour is modified by energy file.write('light_source {\n') file.write('\t< 0,0,0 >\n') file.write('\tcolor rgb<%.3g, %.3g, %.3g>\n' % color) if lamp.type == 'POINT': # Point Lamp pass elif lamp.type == 'SPOT': # Spot file.write('\tspotlight\n') # Falloff is the main radius from the centre line file.write('\tfalloff %.2f\n' % (degrees(lamp.spot_size) / 2.0)) # 1 TO 179 FOR BOTH file.write('\tradius %.6f\n' % ((degrees(lamp.spot_size) / 2.0) * (1.0 - lamp.spot_blend))) # Blender does not have a tightness equivilent, 0 is most like blender default. file.write('\ttightness 0\n') # 0:10f file.write('\tpoint_at <0, 0, -1>\n') elif lamp.type == 'SUN': file.write('\tparallel\n') file.write('\tpoint_at <0, 0, -1>\n') # *must* be after 'parallel' elif lamp.type == 'AREA': size_x = lamp.size samples_x = lamp.shadow_ray_samples_x if lamp.shape == 'SQUARE': size_y = size_x samples_y = samples_x else: size_y = lamp.size_y samples_y = lamp.shadow_ray_samples_y file.write('\tarea_light <%d,0,0>,<0,0,%d> %d, %d\n' % (size_x, size_y, samples_x, samples_y)) if lamp.shadow_ray_sampling_method == 'CONSTANT_JITTERED': if lamp.jitter: file.write('\tjitter\n') else: file.write('\tadaptive 1\n') file.write('\tjitter\n') if lamp.shadow_method == 'NOSHADOW': file.write('\tshadowless\n') file.write('\tfade_distance %.6f\n' % lamp.distance) file.write('\tfade_power %d\n' % 1) # Could use blenders lamp quad? writeMatrix(matrix) file.write('}\n') def exportMeta(metas): # TODO - blenders 'motherball' naming is not supported. for ob in metas: meta = ob.data file.write('blob {\n') file.write('\t\tthreshold %.4g\n' % meta.threshold) try: material = meta.materials[0] # lame! - blender cant do enything else. except: material = None for elem in meta.elements: if elem.type not in ('BALL', 'ELLIPSOID'): continue # Not supported loc = elem.location stiffness = elem.stiffness if elem.negative: stiffness = - stiffness if elem.type == 'BALL': file.write('\tsphere { <%.6g, %.6g, %.6g>, %.4g, %.4g ' % (loc.x, loc.y, loc.z, elem.radius, stiffness)) # After this wecould do something simple like... # "pigment {Blue} }" # except we'll write the color elif elem.type == 'ELLIPSOID': # location is modified by scale file.write('\tsphere { <%.6g, %.6g, %.6g>, %.4g, %.4g ' % (loc.x / elem.size_x, loc.y / elem.size_y, loc.z / elem.size_z, elem.radius, stiffness)) file.write('scale <%.6g, %.6g, %.6g> ' % (elem.size_x, elem.size_y, elem.size_z)) if material: diffuse_color = material.diffuse_color if material.transparency and material.transparency_method == 'RAYTRACE': trans = 1.0 - material.raytrace_transparency.filter else: trans = 0.0 file.write('pigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} finish {%s} }\n' % \ (diffuse_color[0], diffuse_color[1], diffuse_color[2], 1.0 - material.alpha, trans, materialNames[material.name])) else: file.write('pigment {rgb<1 1 1>} finish {%s} }\n' % DEF_MAT_NAME) # Write the finish last. writeObjectMaterial(material) writeMatrix(ob.matrix_world) file.write('}\n') def exportMeshs(scene, sel): ob_num = 0 for ob in sel: ob_num += 1 if ob.type in ('LAMP', 'CAMERA', 'EMPTY', 'META', 'ARMATURE'): continue me = ob.data me_materials = me.materials me = ob.create_mesh(scene, True, 'RENDER') if not me: continue if info_callback: info_callback('Object %2.d of %2.d (%s)' % (ob_num, len(sel), ob.name)) #if ob.type!='MESH': # continue # me = ob.data matrix = ob.matrix_world try: uv_layer = me.active_uv_texture.data except: uv_layer = None try: vcol_layer = me.active_vertex_color.data except: vcol_layer = None faces_verts = [f.verts for f in me.faces] faces_normals = [tuple(f.normal) for f in me.faces] verts_normals = [tuple(v.normal) for v in me.verts] # quads incur an extra face quadCount = len([f for f in faces_verts if len(f) == 4]) file.write('mesh2 {\n') file.write('\tvertex_vectors {\n') file.write('\t\t%s' % (len(me.verts))) # vert count for v in me.verts: file.write(',\n\t\t<%.6f, %.6f, %.6f>' % tuple(v.co)) # vert count file.write('\n }\n') # Build unique Normal list uniqueNormals = {} for fi, f in enumerate(me.faces): fv = faces_verts[fi] # [-1] is a dummy index, use a list so we can modify in place if f.smooth: # Use vertex normals for v in fv: key = verts_normals[v] uniqueNormals[key] = [-1] else: # Use face normal key = faces_normals[fi] uniqueNormals[key] = [-1] file.write('\tnormal_vectors {\n') file.write('\t\t%d' % len(uniqueNormals)) # vert count idx = 0 for no, index in uniqueNormals.items(): file.write(',\n\t\t<%.6f, %.6f, %.6f>' % no) # vert count index[0] = idx idx += 1 file.write('\n }\n') # Vertex colours vertCols = {} # Use for material colours also. if uv_layer: # Generate unique UV's uniqueUVs = {} for fi, uv in enumerate(uv_layer): if len(faces_verts[fi]) == 4: uvs = uv.uv1, uv.uv2, uv.uv3, uv.uv4 else: uvs = uv.uv1, uv.uv2, uv.uv3 for uv in uvs: uniqueUVs[tuple(uv)] = [-1] file.write('\tuv_vectors {\n') #print unique_uvs file.write('\t\t%s' % (len(uniqueUVs))) # vert count idx = 0 for uv, index in uniqueUVs.items(): file.write(',\n\t\t<%.6f, %.6f>' % uv) index[0] = idx idx += 1 ''' else: # Just add 1 dummy vector, no real UV's file.write('\t\t1') # vert count file.write(',\n\t\t<0.0, 0.0>') ''' file.write('\n }\n') if me.vertex_colors: for fi, f in enumerate(me.faces): material_index = f.material_index material = me_materials[material_index] if material and material.vertex_color_paint: col = vcol_layer[fi] if len(faces_verts[fi]) == 4: cols = col.color1, col.color2, col.color3, col.color4 else: cols = col.color1, col.color2, col.color3 for col in cols: key = col[0], col[1], col[2], material_index # Material index! vertCols[key] = [-1] else: if material: diffuse_color = tuple(material.diffuse_color) key = diffuse_color[0], diffuse_color[1], diffuse_color[2], material_index vertCols[key] = [-1] else: # No vertex colours, so write material colours as vertex colours for i, material in enumerate(me_materials): if material: diffuse_color = tuple(material.diffuse_color) key = diffuse_color[0], diffuse_color[1], diffuse_color[2], i # i == f.mat vertCols[key] = [-1] # Vert Colours file.write('\ttexture_list {\n') file.write('\t\t%s' % (len(vertCols))) # vert count idx = 0 for col, index in vertCols.items(): if me_materials: material = me_materials[col[3]] material_finish = materialNames[material.name] if material.transparency and material.transparency_method == 'RAYTRACE': trans = 1.0 - material.raytrace_transparency.filter else: trans = 0.0 else: material_finish = DEF_MAT_NAME # not working properly, trans = 0.0 #print material.apl file.write(',\n\t\ttexture { pigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} finish {%s}}' % (col[0], col[1], col[2], 1.0 - material.alpha, trans, material_finish)) index[0] = idx idx += 1 file.write('\n }\n') # Face indicies file.write('\tface_indices {\n') file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count for fi, f in enumerate(me.faces): fv = faces_verts[fi] material_index = f.material_index if len(fv) == 4: indicies = (0, 1, 2), (0, 2, 3) else: indicies = ((0, 1, 2),) if vcol_layer: col = vcol_layer[fi] if len(fv) == 4: cols = col.color1, col.color2, col.color3, col.color4 else: cols = col.color1, col.color2, col.color3 if not me_materials or me_materials[material_index] == None: # No materials for i1, i2, i3 in indicies: file.write(',\n\t\t<%d,%d,%d>' % (fv[i1], fv[i2], fv[i3])) # vert count else: material = me_materials[material_index] for i1, i2, i3 in indicies: if me.vertex_colors and material.vertex_color_paint: # Colour per vertex - vertex colour col1 = cols[i1] col2 = cols[i2] col3 = cols[i3] ci1 = vertCols[col1[0], col1[1], col1[2], material_index][0] ci2 = vertCols[col2[0], col2[1], col2[2], material_index][0] ci3 = vertCols[col3[0], col3[1], col3[2], material_index][0] else: # Colour per material - flat material colour diffuse_color = material.diffuse_color ci1 = ci2 = ci3 = vertCols[diffuse_color[0], diffuse_color[1], diffuse_color[2], f.material_index][0] file.write(',\n\t\t<%d,%d,%d>, %d,%d,%d' % (fv[i1], fv[i2], fv[i3], ci1, ci2, ci3)) # vert count file.write('\n }\n') # normal_indices indicies file.write('\tnormal_indices {\n') file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count for fi, fv in enumerate(faces_verts): if len(fv) == 4: indicies = (0, 1, 2), (0, 2, 3) else: indicies = ((0, 1, 2),) for i1, i2, i3 in indicies: if f.smooth: file.write(',\n\t\t<%d,%d,%d>' %\ (uniqueNormals[verts_normals[fv[i1]]][0],\ uniqueNormals[verts_normals[fv[i2]]][0],\ uniqueNormals[verts_normals[fv[i3]]][0])) # vert count else: idx = uniqueNormals[faces_normals[fi]][0] file.write(',\n\t\t<%d,%d,%d>' % (idx, idx, idx)) # vert count file.write('\n }\n') if uv_layer: file.write('\tuv_indices {\n') file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count for fi, fv in enumerate(faces_verts): if len(fv) == 4: indicies = (0, 1, 2), (0, 2, 3) else: indicies = ((0, 1, 2),) uv = uv_layer[fi] if len(faces_verts[fi]) == 4: uvs = tuple(uv.uv1), tuple(uv.uv2), tuple(uv.uv3), tuple(uv.uv4) else: uvs = tuple(uv.uv1), tuple(uv.uv2), tuple(uv.uv3) for i1, i2, i3 in indicies: file.write(',\n\t\t<%d,%d,%d>' %\ (uniqueUVs[uvs[i1]][0],\ uniqueUVs[uvs[i2]][0],\ uniqueUVs[uvs[i2]][0])) # vert count file.write('\n }\n') if me.materials: material = me.materials[0] # dodgy writeObjectMaterial(material) writeMatrix(matrix) file.write('}\n') bpy.data.meshes.remove(me) def exportWorld(world): if not world: return mist = world.mist if mist.use_mist: file.write('fog {\n') file.write('\tdistance %.6f\n' % mist.depth) file.write('\tcolor rgbt<%.3g, %.3g, %.3g, %.3g>\n' % (tuple(world.horizon_color) + (1 - mist.intensity,))) #file.write('\tfog_offset %.6f\n' % mist.start) #file.write('\tfog_alt 5\n') #file.write('\tturbulence 0.2\n') #file.write('\tturb_depth 0.3\n') file.write('\tfog_type 1\n') file.write('}\n') def exportGlobalSettings(scene): file.write('global_settings {\n') if scene.pov_radio_enable: file.write('\tradiosity {\n') file.write("\t\tadc_bailout %.4g\n" % scene.pov_radio_adc_bailout) file.write("\t\talways_sample %d\n" % scene.pov_radio_always_sample) file.write("\t\tbrightness %.4g\n" % scene.pov_radio_brightness) file.write("\t\tcount %d\n" % scene.pov_radio_count) file.write("\t\terror_bound %.4g\n" % scene.pov_radio_error_bound) file.write("\t\tgray_threshold %.4g\n" % scene.pov_radio_gray_threshold) file.write("\t\tlow_error_factor %.4g\n" % scene.pov_radio_low_error_factor) file.write("\t\tmedia %d\n" % scene.pov_radio_media) file.write("\t\tminimum_reuse %.4g\n" % scene.pov_radio_minimum_reuse) file.write("\t\tnearest_count %d\n" % scene.pov_radio_nearest_count) file.write("\t\tnormal %d\n" % scene.pov_radio_normal) file.write("\t\trecursion_limit %d\n" % scene.pov_radio_recursion_limit) file.write('\t}\n') if world: file.write("\tambient_light rgb<%.3g, %.3g, %.3g>\n" % tuple(world.ambient_color)) file.write('}\n') # Convert all materials to strings we can access directly per vertex. writeMaterial(None) # default material for material in bpy.data.materials: writeMaterial(material) exportCamera() #exportMaterials() sel = scene.objects exportLamps([l for l in sel if l.type == 'LAMP']) exportMeta([l for l in sel if l.type == 'META']) exportMeshs(scene, sel) exportWorld(scene.world) exportGlobalSettings(scene) file.close() def write_pov_ini(filename_ini, filename_pov, filename_image): scene = bpy.data.scenes[0] render = scene.render x = int(render.resolution_x * render.resolution_percentage * 0.01) y = int(render.resolution_y * render.resolution_percentage * 0.01) file = open(filename_ini, 'w') file.write('Input_File_Name="%s"\n' % filename_pov) file.write('Output_File_Name="%s"\n' % filename_image) file.write('Width=%d\n' % x) file.write('Height=%d\n' % y) # Needed for border render. ''' file.write('Start_Column=%d\n' % part.x) file.write('End_Column=%d\n' % (part.x+part.w)) file.write('Start_Row=%d\n' % (part.y)) file.write('End_Row=%d\n' % (part.y+part.h)) ''' file.write('Display=0\n') file.write('Pause_When_Done=0\n') file.write('Output_File_Type=T\n') # TGA, best progressive loading file.write('Output_Alpha=1\n') if render.render_antialiasing: aa_mapping = {'5': 2, '8': 3, '11': 4, '16': 5} # method 1 assumed file.write('Antialias=1\n') file.write('Antialias_Depth=%d\n' % aa_mapping[render.antialiasing_samples]) else: file.write('Antialias=0\n') file.close() # Radiosity panel, use in the scene for now. FloatProperty = bpy.types.Scene.FloatProperty IntProperty = bpy.types.Scene.IntProperty BoolProperty = bpy.types.Scene.BoolProperty # Not a real pov option, just to know if we should write BoolProperty(attr="pov_radio_enable", name="Enable Radiosity", description="Enable povrays radiosity calculation", default=False) BoolProperty(attr="pov_radio_display_advanced", name="Advanced Options", description="Show advanced options", default=False) # Real pov options FloatProperty(attr="pov_radio_adc_bailout", name="ADC Bailout", description="The adc_bailout for radiosity rays. Use adc_bailout = 0.01 / brightest_ambient_object for good results", min=0.0, max=1000.0, soft_min=0.0, soft_max=1.0, default=0.01) BoolProperty(attr="pov_radio_always_sample", name="Always Sample", description="Only use the data from the pretrace step and not gather any new samples during the final radiosity pass", default=True) FloatProperty(attr="pov_radio_brightness", name="Brightness", description="Amount objects are brightened before being returned upwards to the rest of the system", min=0.0, max=1000.0, soft_min=0.0, soft_max=10.0, default=1.0) IntProperty(attr="pov_radio_count", name="Ray Count", description="Number of rays that are sent out whenever a new radiosity value has to be calculated", min=1, max=1600, default=35) FloatProperty(attr="pov_radio_error_bound", name="Error Bound", description="One of the two main speed/quality tuning values, lower values are more accurate", min=0.0, max=1000.0, soft_min=0.1, soft_max=10.0, default=1.8) FloatProperty(attr="pov_radio_gray_threshold", name="Gray Threshold", description="One of the two main speed/quality tuning values, lower values are more accurate", min=0.0, max=1.0, soft_min=0, soft_max=1, default=0.0) FloatProperty(attr="pov_radio_low_error_factor", name="Low Error Factor", description="If you calculate just enough samples, but no more, you will get an image which has slightly blotchy lighting", min=0.0, max=1.0, soft_min=0.0, soft_max=1.0, default=0.5) # max_sample - not available yet BoolProperty(attr="pov_radio_media", name="Media", description="Radiosity estimation can be affected by media", default=False) FloatProperty(attr="pov_radio_minimum_reuse", name="Minimum Reuse", description="Fraction of the screen width which sets the minimum radius of reuse for each sample point (At values higher than 2% expect errors)", min=0.0, max=1.0, soft_min=0.1, soft_max=0.1, default=0.015) IntProperty(attr="pov_radio_nearest_count", name="Nearest Count", description="Number of old ambient values blended together to create a new interpolated value", min=1, max=20, default=5) BoolProperty(attr="pov_radio_normal", name="Normals", description="Radiosity estimation can be affected by normals", default=False) IntProperty(attr="pov_radio_recursion_limit", name="Recursion Limit", description="how many recursion levels are used to calculate the diffuse inter-reflection", min=1, max=20, default=3) class PovrayRender(bpy.types.RenderEngine): bl_idname = 'POVRAY_RENDER' bl_label = "Povray" DELAY = 0.02 def _export(self, scene): import tempfile self._temp_file_in = tempfile.mktemp(suffix='.pov') self._temp_file_out = tempfile.mktemp(suffix='.tga') self._temp_file_ini = tempfile.mktemp(suffix='.ini') ''' self._temp_file_in = '/test.pov' self._temp_file_out = '/test.tga' self._temp_file_ini = '/test.ini' ''' def info_callback(txt): self.update_stats("", "POVRAY: " + txt) write_pov(self._temp_file_in, scene, info_callback) def _render(self): try: os.remove(self._temp_file_out) # so as not to load the old file except: pass write_pov_ini(self._temp_file_ini, self._temp_file_in, self._temp_file_out) print ("***-STARTING-***") pov_binary = "povray" if sys.platform == 'win32': import winreg regKey = winreg.OpenKey(winreg.HKEY_CURRENT_USER, 'Software\\POV-Ray\\v3.6\\Windows') if bitness == 64: pov_binary = winreg.QueryValueEx(regKey, 'Home')[0] + '\\bin\\pvengine64' else: pov_binary = winreg.QueryValueEx(regKey, 'Home')[0] + '\\bin\\pvengine' if 1: # TODO, when povray isnt found this gives a cryptic error, would be nice to be able to detect if it exists try: self._process = subprocess.Popen([pov_binary, self._temp_file_ini]) # stdout=subprocess.PIPE, stderr=subprocess.PIPE except OSError: # TODO, report api print("POVRAY: could not execute '%s', possibly povray isn't installed" % pov_binary) import traceback traceback.print_exc() print ("***-DONE-***") return False else: # This works too but means we have to wait until its done os.system('%s %s' % (pov_binary, self._temp_file_ini)) print ("***-DONE-***") return True def _cleanup(self): for f in (self._temp_file_in, self._temp_file_ini, self._temp_file_out): try: os.remove(f) except: pass self.update_stats("", "") def render(self, scene): self.update_stats("", "POVRAY: Exporting data from Blender") self._export(scene) self.update_stats("", "POVRAY: Parsing File") if not self._render(): self.update_stats("", "POVRAY: Not found") return r = scene.render # compute resolution x = int(r.resolution_x * r.resolution_percentage * 0.01) y = int(r.resolution_y * r.resolution_percentage * 0.01) # Wait for the file to be created while not os.path.exists(self._temp_file_out): if self.test_break(): try: self._process.terminate() except: pass break if self._process.poll() != None: self.update_stats("", "POVRAY: Failed") break time.sleep(self.DELAY) if os.path.exists(self._temp_file_out): self.update_stats("", "POVRAY: Rendering") prev_size = -1 def update_image(): result = self.begin_result(0, 0, x, y) lay = result.layers[0] # possible the image wont load early on. try: lay.load_from_file(self._temp_file_out) except: pass self.end_result(result) # Update while povray renders while True: # test if povray exists if self._process.poll() is not None: update_image() break # user exit if self.test_break(): try: self._process.terminate() except: pass break # Would be nice to redirect the output # stdout_value, stderr_value = self._process.communicate() # locks # check if the file updated new_size = os.path.getsize(self._temp_file_out) if new_size != prev_size: update_image() prev_size = new_size time.sleep(self.DELAY) self._cleanup() # Use some of the existing buttons. import properties_render properties_render.RENDER_PT_render.COMPAT_ENGINES.add('POVRAY_RENDER') properties_render.RENDER_PT_dimensions.COMPAT_ENGINES.add('POVRAY_RENDER') properties_render.RENDER_PT_antialiasing.COMPAT_ENGINES.add('POVRAY_RENDER') properties_render.RENDER_PT_output.COMPAT_ENGINES.add('POVRAY_RENDER') del properties_render # Use only a subset of the world panels import properties_world properties_world.WORLD_PT_preview.COMPAT_ENGINES.add('POVRAY_RENDER') properties_world.WORLD_PT_context_world.COMPAT_ENGINES.add('POVRAY_RENDER') properties_world.WORLD_PT_world.COMPAT_ENGINES.add('POVRAY_RENDER') properties_world.WORLD_PT_mist.COMPAT_ENGINES.add('POVRAY_RENDER') del properties_world # Example of wrapping every class 'as is' import properties_material for member in dir(properties_material): subclass = getattr(properties_material, member) try: subclass.COMPAT_ENGINES.add('POVRAY_RENDER') except: pass del properties_material import properties_data_mesh for member in dir(properties_data_mesh): subclass = getattr(properties_data_mesh, member) try: subclass.COMPAT_ENGINES.add('POVRAY_RENDER') except: pass del properties_data_mesh import properties_texture for member in dir(properties_texture): subclass = getattr(properties_texture, member) try: subclass.COMPAT_ENGINES.add('POVRAY_RENDER') except: pass del properties_texture import properties_data_camera for member in dir(properties_data_camera): subclass = getattr(properties_data_camera, member) try: subclass.COMPAT_ENGINES.add('POVRAY_RENDER') except: pass del properties_data_camera class RenderButtonsPanel(bpy.types.Panel): bl_space_type = 'PROPERTIES' bl_region_type = 'WINDOW' bl_context = "render" # COMPAT_ENGINES must be defined in each subclass, external engines can add themselves here def poll(self, context): rd = context.scene.render return (rd.use_game_engine == False) and (rd.engine in self.COMPAT_ENGINES) class RENDER_PT_povray_radiosity(RenderButtonsPanel): bl_label = "Radiosity" COMPAT_ENGINES = {'POVRAY_RENDER'} def draw_header(self, context): scene = context.scene self.layout.prop(scene, "pov_radio_enable", text="") def draw(self, context): layout = self.layout scene = context.scene rd = scene.render layout.active = scene.pov_radio_enable split = layout.split() col = split.column() col.prop(scene, "pov_radio_count", text="Rays") col.prop(scene, "pov_radio_recursion_limit", text="Recursions") col = split.column() col.prop(scene, "pov_radio_error_bound", text="Error") layout.prop(scene, "pov_radio_display_advanced") if scene.pov_radio_display_advanced: split = layout.split() col = split.column() col.prop(scene, "pov_radio_adc_bailout", slider=True) col.prop(scene, "pov_radio_gray_threshold", slider=True) col.prop(scene, "pov_radio_low_error_factor", slider=True) col = split.column() col.prop(scene, "pov_radio_brightness") col.prop(scene, "pov_radio_minimum_reuse", text="Min Reuse") col.prop(scene, "pov_radio_nearest_count") split = layout.split() col = split.column() col.label(text="Estimation Influence:") col.prop(scene, "pov_radio_media") col.prop(scene, "pov_radio_normal") col = split.column() col.prop(scene, "pov_radio_always_sample") classes = [ PovrayRender, RENDER_PT_povray_radiosity] def register(): register = bpy.types.register for cls in classes: register(cls) def unregister(): unregister = bpy.types.unregister for cls in classes: unregister(cls) if __name__ == "__main__": register()