/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Rosegarden A sequencer and musical notation editor. Copyright 2000-2011 the Rosegarden development team. See the AUTHORS file for more details. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "base/AudioLevel.h" #include #include #include #include namespace Rosegarden { const float AudioLevel::DB_FLOOR = -1000.0; struct FaderDescription { FaderDescription(float _minDb, float _maxDb, float _zeroPoint) : minDb(_minDb), maxDb(_maxDb), zeroPoint(_zeroPoint) { } float minDb; float maxDb; float zeroPoint; // as fraction of total throw }; static const FaderDescription faderTypes[] = { FaderDescription(-40.0, +6.0, 0.75), // short FaderDescription(-70.0, +10.0, 0.80), // long FaderDescription(-70.0, 0.0, 1.00), // IEC268 FaderDescription(-70.0, +10.0, 0.80), // IEC268 long FaderDescription(-40.0, 0.0, 1.00), // preview }; typedef std::vector LevelList; static std::map previewLevelCache; static const LevelList &getPreviewLevelCache(int levels); float AudioLevel::multiplier_to_dB(float multiplier) { if (multiplier == 0.0) return DB_FLOOR; float dB = 10 * log10f(multiplier); return dB; } float AudioLevel::dB_to_multiplier(float dB) { if (dB == DB_FLOOR) return 0.0; float m = powf(10.0, dB / 10.0); return m; } /* IEC 60-268-18 fader levels. Thanks to Steve Harris. */ static float iec_dB_to_fader(float db) { float def = 0.0f; // Meter deflection %age if (db < -70.0f) { def = 0.0f; } else if (db < -60.0f) { def = (db + 70.0f) * 0.25f; } else if (db < -50.0f) { def = (db + 60.0f) * 0.5f + 5.0f; } else if (db < -40.0f) { def = (db + 50.0f) * 0.75f + 7.5f; } else if (db < -30.0f) { def = (db + 40.0f) * 1.5f + 15.0f; } else if (db < -20.0f) { def = (db + 30.0f) * 2.0f + 30.0f; } else { def = (db + 20.0f) * 2.5f + 50.0f; } return def; } static float iec_fader_to_dB(float def) // Meter deflection %age { float db = 0.0f; if (def >= 50.0f) { db = (def - 50.0f) / 2.5f - 20.0f; } else if (def >= 30.0f) { db = (def - 30.0f) / 2.0f - 30.0f; } else if (def >= 15.0f) { db = (def - 15.0f) / 1.5f - 40.0f; } else if (def >= 7.5f) { db = (def - 7.5f) / 0.75f - 50.0f; } else if (def >= 5.0f) { db = (def - 5.0f) / 0.5f - 60.0f; } else { db = (def / 0.25f) - 70.0f; } return db; } float AudioLevel::fader_to_dB(int level, int maxLevel, FaderType type) { if (level == 0) return DB_FLOOR; if (type == IEC268Meter || type == IEC268LongMeter) { float maxPercent = iec_dB_to_fader(faderTypes[type].maxDb); float percent = float(level) * maxPercent / float(maxLevel); float dB = iec_fader_to_dB(percent); return dB; } else { // scale proportional to sqrt(fabs(dB)) int zeroLevel = int(maxLevel * faderTypes[type].zeroPoint); if (level >= zeroLevel) { float value = level - zeroLevel; float scale = float(maxLevel - zeroLevel) / sqrtf(faderTypes[type].maxDb); value /= scale; float dB = powf(value, 2.0); return dB; } else { float value = zeroLevel - level; float scale = zeroLevel / sqrtf(0.0 - faderTypes[type].minDb); value /= scale; float dB = powf(value, 2.0); return 0.0 - dB; } } } int AudioLevel::dB_to_fader(float dB, int maxLevel, FaderType type) { if (dB == DB_FLOOR) return 0; if (type == IEC268Meter || type == IEC268LongMeter) { // The IEC scale gives a "percentage travel" for a given dB // level, but it reaches 100% at 0dB. So we want to treat the // result not as a percentage, but as a scale between 0 and // whatever the "percentage" for our (possibly >0dB) max dB is. float maxPercent = iec_dB_to_fader(faderTypes[type].maxDb); float percent = iec_dB_to_fader(dB); int faderLevel = int((maxLevel * percent) / maxPercent + 0.01); if (faderLevel < 0) faderLevel = 0; if (faderLevel > maxLevel) faderLevel = maxLevel; return faderLevel; } else { int zeroLevel = int(maxLevel * faderTypes[type].zeroPoint); if (dB >= 0.0) { float value = sqrtf(dB); float scale = (maxLevel - zeroLevel) / sqrtf(faderTypes[type].maxDb); value *= scale; int level = int(value + 0.01) + zeroLevel; if (level > maxLevel) level = maxLevel; return level; } else { dB = 0.0 - dB; float value = sqrtf(dB); float scale = zeroLevel / sqrtf(0.0 - faderTypes[type].minDb); value *= scale; int level = zeroLevel - int(value + 0.01); if (level < 0) level = 0; return level; } } } float AudioLevel::fader_to_multiplier(int level, int maxLevel, FaderType type) { if (level == 0) return 0.0; return dB_to_multiplier(fader_to_dB(level, maxLevel, type)); } int AudioLevel::multiplier_to_fader(float multiplier, int maxLevel, FaderType type) { if (multiplier == 0.0) return 0; float dB = multiplier_to_dB(multiplier); int fader = dB_to_fader(dB, maxLevel, type); return fader; } const LevelList & getPreviewLevelCache(int levels) { LevelList &ll = previewLevelCache[levels]; if (ll.empty()) { for (int i = 0; i <= levels; ++i) { float m = AudioLevel::fader_to_multiplier (i, levels, AudioLevel::PreviewLevel); if (levels == 1) m /= 100; // noise ll.push_back(m); } } return ll; } int AudioLevel::multiplier_to_preview(float m, int levels) { const LevelList &ll = getPreviewLevelCache(levels); int result = -1; int lo = 0, hi = levels; // binary search int level = -1; while (result < 0) { int newlevel = (lo + hi) / 2; if (newlevel == level || newlevel == 0 || newlevel == levels) { result = newlevel; break; } level = newlevel; if (ll[level] >= m) { hi = level; } else if (ll[level+1] >= m) { result = level; } else { lo = level; } } return result; } float AudioLevel::preview_to_multiplier(int level, int levels) { const LevelList &ll = getPreviewLevelCache(levels); return ll[level]; } }