/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Sonic Visualiser An audio file viewer and annotation editor. Centre for Digital Music, Queen Mary, University of London. This file copyright 2006 Chris Cannam and QMUL. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "AudioTimeStretcher.h" #include #include #include #include namespace Rosegarden { static double mod(double x, double y) { return x - (y * floor(x / y)); } static float modf(float x, float y) { return x - (y * floorf(x / y)); } static double princarg(double a) { return mod(a + M_PI, -2 * M_PI) + M_PI; } static float princargf(float a) { return modf(a + M_PI, -2 * M_PI) + M_PI; } //#define DEBUG_AUDIO_TIME_STRETCHER 1 AudioTimeStretcher::AudioTimeStretcher(size_t sampleRate, size_t channels, float ratio, bool sharpen, size_t maxOutputBlockSize) : m_sampleRate(sampleRate), m_channels(channels), m_maxOutputBlockSize(maxOutputBlockSize), m_ratio(ratio), m_sharpen(sharpen), m_totalCount(0), m_transientCount(0), m_n2sum(0), m_n2total(0), m_adjustCount(50) { pthread_mutex_t initialisingMutex = PTHREAD_MUTEX_INITIALIZER; memcpy(&m_mutex, &initialisingMutex, sizeof(pthread_mutex_t)); initialise(); } AudioTimeStretcher::~AudioTimeStretcher() { std::cerr << "AudioTimeStretcher::~AudioTimeStretcher" << std::endl; std::cerr << "AudioTimeStretcher::~AudioTimeStretcher: actual ratio = " << (m_totalCount > 0 ? (float (m_n2total) / float(m_totalCount * m_n1)) : 1.f) << ", ideal = " << m_ratio << ", nominal = " << getRatio() << ")" << std::endl; cleanup(); pthread_mutex_destroy(&m_mutex); } void AudioTimeStretcher::initialise() { std::cerr << "AudioTimeStretcher::initialise" << std::endl; calculateParameters(); m_analysisWindow = new SampleWindow(SampleWindow::Hanning, m_wlen); m_synthesisWindow = new SampleWindow(SampleWindow::Hanning, m_wlen); m_prevPhase = new float *[m_channels]; m_prevAdjustedPhase = new float *[m_channels]; m_prevTransientMag = (float *)fftwf_malloc(sizeof(float) * (m_wlen / 2 + 1)); m_prevTransientScore = 0; m_prevTransient = false; m_tempbuf = (float *)fftwf_malloc(sizeof(float) * m_wlen); m_time = new float *[m_channels]; m_freq = new fftwf_complex *[m_channels]; m_plan = new fftwf_plan[m_channels]; m_iplan = new fftwf_plan[m_channels]; m_inbuf = new RingBuffer *[m_channels]; m_outbuf = new RingBuffer *[m_channels]; m_mashbuf = new float *[m_channels]; m_modulationbuf = (float *)fftwf_malloc(sizeof(float) * m_wlen); for (size_t c = 0; c < m_channels; ++c) { m_prevPhase[c] = (float *)fftwf_malloc(sizeof(float) * (m_wlen / 2 + 1)); m_prevAdjustedPhase[c] = (float *)fftwf_malloc(sizeof(float) * (m_wlen / 2 + 1)); m_time[c] = (float *)fftwf_malloc(sizeof(float) * m_wlen); m_freq[c] = (fftwf_complex *)fftwf_malloc(sizeof(fftwf_complex) * (m_wlen / 2 + 1)); m_plan[c] = fftwf_plan_dft_r2c_1d(m_wlen, m_time[c], m_freq[c], FFTW_ESTIMATE); m_iplan[c] = fftwf_plan_dft_c2r_1d(m_wlen, m_freq[c], m_time[c], FFTW_ESTIMATE); m_outbuf[c] = new RingBuffer ((m_maxOutputBlockSize + m_wlen) * 2); m_inbuf[c] = new RingBuffer (lrintf(m_outbuf[c]->getSize() / m_ratio) + m_wlen); std::cerr << "making inbuf size " << m_inbuf[c]->getSize() << " (outbuf size is " << m_outbuf[c]->getSize() << ", ratio " << m_ratio << ")" << std::endl; m_mashbuf[c] = (float *)fftwf_malloc(sizeof(float) * m_wlen); for (size_t i = 0; i < m_wlen; ++i) { m_mashbuf[c][i] = 0.0; } for (size_t i = 0; i <= m_wlen/2; ++i) { m_prevPhase[c][i] = 0.0; m_prevAdjustedPhase[c][i] = 0.0; } } for (size_t i = 0; i < m_wlen; ++i) { m_modulationbuf[i] = 0.0; } for (size_t i = 0; i <= m_wlen/2; ++i) { m_prevTransientMag[i] = 0.0; } } void AudioTimeStretcher::calculateParameters() { std::cerr << "AudioTimeStretcher::calculateParameters" << std::endl; m_wlen = 1024; //!!! In transient sharpening mode, we need to pick the window //length so as to be more or less fixed in audio duration (i.e. we //need to exploit the sample rate) //!!! have to work out the relationship between wlen and transient //threshold if (m_ratio < 1) { if (m_ratio < 0.4) { m_n1 = 1024; m_wlen = 2048; } else if (m_ratio < 0.8) { m_n1 = 512; } else { m_n1 = 256; } if (shouldSharpen()) { m_wlen = 2048; } m_n2 = lrintf(m_n1 * m_ratio); } else { if (m_ratio > 2) { m_n2 = 512; m_wlen = 4096; } else if (m_ratio > 1.6) { m_n2 = 384; m_wlen = 2048; } else { m_n2 = 256; } if (shouldSharpen()) { if (m_wlen < 2048) m_wlen = 2048; } m_n1 = lrintf(m_n2 / m_ratio); if (m_n1 == 0) { m_n1 = 1; m_n2 = m_ratio; } } m_transientThreshold = lrintf(m_wlen / 4.5); m_totalCount = 0; m_transientCount = 0; m_n2sum = 0; m_n2total = 0; m_n2list.clear(); std::cerr << "AudioTimeStretcher: channels = " << m_channels << ", ratio = " << m_ratio << ", n1 = " << m_n1 << ", n2 = " << m_n2 << ", wlen = " << m_wlen << ", max = " << m_maxOutputBlockSize << std::endl; // << ", outbuflen = " << m_outbuf[0]->getSize() << std::endl; } void AudioTimeStretcher::cleanup() { std::cerr << "AudioTimeStretcher::cleanup" << std::endl; for (size_t c = 0; c < m_channels; ++c) { fftwf_destroy_plan(m_plan[c]); fftwf_destroy_plan(m_iplan[c]); fftwf_free(m_time[c]); fftwf_free(m_freq[c]); fftwf_free(m_mashbuf[c]); fftwf_free(m_prevPhase[c]); fftwf_free(m_prevAdjustedPhase[c]); delete m_inbuf[c]; delete m_outbuf[c]; } fftwf_free(m_tempbuf); fftwf_free(m_modulationbuf); fftwf_free(m_prevTransientMag); delete[] m_prevPhase; delete[] m_prevAdjustedPhase; delete[] m_inbuf; delete[] m_outbuf; delete[] m_mashbuf; delete[] m_time; delete[] m_freq; delete[] m_plan; delete[] m_iplan; delete m_analysisWindow; delete m_synthesisWindow; } void AudioTimeStretcher::setRatio(float ratio) { pthread_mutex_lock(&m_mutex); size_t formerWlen = m_wlen; m_ratio = ratio; std::cerr << "AudioTimeStretcher::setRatio: new ratio " << ratio << std::endl; calculateParameters(); if (m_wlen == formerWlen) { // This is the only container whose size depends on m_ratio RingBuffer **newin = new RingBuffer *[m_channels]; size_t formerSize = m_inbuf[0]->getSize(); size_t newSize = lrintf(m_outbuf[0]->getSize() / m_ratio) + m_wlen; std::cerr << "resizing inbuf from " << formerSize << " to " << newSize << " (outbuf size is " << m_outbuf[0]->getSize() << ", ratio " << m_ratio << ")" << std::endl; if (formerSize != newSize) { size_t ready = m_inbuf[0]->getReadSpace(); for (size_t c = 0; c < m_channels; ++c) { newin[c] = new RingBuffer(newSize); } if (ready > 0) { size_t copy = std::min(ready, newSize); float *tmp = new float[ready]; for (size_t c = 0; c < m_channels; ++c) { m_inbuf[c]->read(tmp, ready); newin[c]->write(tmp + ready - copy, copy); } delete[] tmp; } for (size_t c = 0; c < m_channels; ++c) { delete m_inbuf[c]; } delete[] m_inbuf; m_inbuf = newin; } } else { std::cerr << "wlen changed" << std::endl; cleanup(); initialise(); } pthread_mutex_unlock(&m_mutex); } size_t AudioTimeStretcher::getProcessingLatency() const { return getWindowSize() - getInputIncrement(); } size_t AudioTimeStretcher::getRequiredInputSamples() const { size_t rv; pthread_mutex_lock(&m_mutex); if (m_inbuf[0]->getReadSpace() >= m_wlen) rv = 0; else rv = m_wlen - m_inbuf[0]->getReadSpace(); pthread_mutex_unlock(&m_mutex); return rv; } void AudioTimeStretcher::putInput(float **input, size_t samples) { pthread_mutex_lock(&m_mutex); // We need to add samples from input to our internal buffer. When // we have m_windowSize samples in the buffer, we can process it, // move the samples back by m_n1 and write the output onto our // internal output buffer. If we have (samples * ratio) samples // in that, we can write m_n2 of them back to output and return // (otherwise we have to write zeroes). // When we process, we write m_wlen to our fixed output buffer // (m_mashbuf). We then pull out the first m_n2 samples from that // buffer, push them into the output ring buffer, and shift // m_mashbuf left by that amount. // The processing latency is then m_wlen - m_n2. size_t consumed = 0; while (consumed < samples) { size_t writable = m_inbuf[0]->getWriteSpace(); writable = std::min(writable, samples - consumed); if (writable == 0) { #ifdef DEBUG_AUDIO_TIME_STRETCHER std::cerr << "WARNING: AudioTimeStretcher::putInput: writable == 0 (inbuf has " << m_inbuf[0]->getReadSpace() << " samples available for reading, space for " << m_inbuf[0]->getWriteSpace() << " more)" << std::endl; #endif if (m_inbuf[0]->getReadSpace() < m_wlen || m_outbuf[0]->getWriteSpace() < m_n2) { std::cerr << "WARNING: AudioTimeStretcher::putInput: Inbuf has " << m_inbuf[0]->getReadSpace() << ", outbuf has space for " << m_outbuf[0]->getWriteSpace() << " (n2 = " << m_n2 << ", wlen = " << m_wlen << "), won't be able to process" << std::endl; break; } } else { #ifdef DEBUG_AUDIO_TIME_STRETCHER std::cerr << "writing " << writable << " from index " << consumed << " to inbuf, consumed will be " << consumed + writable << std::endl; #endif for (size_t c = 0; c < m_channels; ++c) { m_inbuf[c]->write(input[c] + consumed, writable); } consumed += writable; } while (m_inbuf[0]->getReadSpace() >= m_wlen && m_outbuf[0]->getWriteSpace() >= m_n2) { // We know we have at least m_wlen samples available // in m_inbuf. We need to peek m_wlen of them for // processing, and then read m_n1 to advance the read // pointer. for (size_t c = 0; c < m_channels; ++c) { size_t got = m_inbuf[c]->peek(m_tempbuf, m_wlen); assert(got == m_wlen); analyseBlock(c, m_tempbuf); } bool transient = false; if (shouldSharpen()) transient = isTransient(); size_t n2 = m_n2; if (transient) { n2 = m_n1; } ++m_totalCount; if (transient) ++m_transientCount; m_n2sum += n2; m_n2total += n2; if (m_totalCount > 50 && m_transientCount < m_totalCount) { int fixed = m_transientCount * m_n1; float idealTotal = m_totalCount * m_n1 * m_ratio; float idealSquashy = idealTotal - fixed; float squashyCount = m_totalCount - m_transientCount; float fn2 = idealSquashy / squashyCount; n2 = int(fn2); float remainder = fn2 - n2; if (drand48() < remainder) ++n2; #ifdef DEBUG_AUDIO_TIME_STRETCHER if (n2 != m_n2) { std::cerr << m_n2 << " -> " << n2 << " (ideal = " << (idealSquashy / squashyCount) << ")" << std::endl; } #endif } for (size_t c = 0; c < m_channels; ++c) { synthesiseBlock(c, m_mashbuf[c], c == 0 ? m_modulationbuf : 0, m_prevTransient ? m_n1 : m_n2); #ifdef DEBUG_AUDIO_TIME_STRETCHER std::cerr << "writing first " << m_n2 << " from mashbuf, skipping " << m_n1 << " on inbuf " << std::endl; #endif m_inbuf[c]->skip(m_n1); for (size_t i = 0; i < n2; ++i) { if (m_modulationbuf[i] > 0.f) { m_mashbuf[c][i] /= m_modulationbuf[i]; } } m_outbuf[c]->write(m_mashbuf[c], n2); for (size_t i = 0; i < m_wlen - n2; ++i) { m_mashbuf[c][i] = m_mashbuf[c][i + n2]; } for (size_t i = m_wlen - n2; i < m_wlen; ++i) { m_mashbuf[c][i] = 0.0f; } } m_prevTransient = transient; for (size_t i = 0; i < m_wlen - n2; ++i) { m_modulationbuf[i] = m_modulationbuf[i + n2]; } for (size_t i = m_wlen - n2; i < m_wlen; ++i) { m_modulationbuf[i] = 0.0f; } if (!transient) m_n2 = n2; } #ifdef DEBUG_AUDIO_TIME_STRETCHER std::cerr << "loop ended: inbuf read space " << m_inbuf[0]->getReadSpace() << ", outbuf write space " << m_outbuf[0]->getWriteSpace() << std::endl; #endif } #ifdef DEBUG_AUDIO_TIME_STRETCHER std::cerr << "AudioTimeStretcher::putInput returning" << std::endl; #endif pthread_mutex_unlock(&m_mutex); // std::cerr << "ratio: nominal: " << getRatio() << " actual: " // << m_total2 << "/" << m_total1 << " = " << float(m_total2) / float(m_total1) << " ideal: " << m_ratio << std::endl; } size_t AudioTimeStretcher::getAvailableOutputSamples() const { pthread_mutex_lock(&m_mutex); size_t rv = m_outbuf[0]->getReadSpace(); pthread_mutex_unlock(&m_mutex); return rv; } void AudioTimeStretcher::getOutput(float **output, size_t samples) { pthread_mutex_lock(&m_mutex); if (m_outbuf[0]->getReadSpace() < samples) { std::cerr << "WARNING: AudioTimeStretcher::getOutput: not enough data (yet?) (" << m_outbuf[0]->getReadSpace() << " < " << samples << ")" << std::endl; size_t fill = samples - m_outbuf[0]->getReadSpace(); for (size_t c = 0; c < m_channels; ++c) { for (size_t i = 0; i < fill; ++i) { output[c][i] = 0.0; } m_outbuf[c]->read(output[c] + fill, m_outbuf[c]->getReadSpace()); } } else { #ifdef DEBUG_AUDIO_TIME_STRETCHER std::cerr << "enough data - writing " << samples << " from outbuf" << std::endl; #endif for (size_t c = 0; c < m_channels; ++c) { m_outbuf[c]->read(output[c], samples); } } #ifdef DEBUG_AUDIO_TIME_STRETCHER std::cerr << "AudioTimeStretcher::getOutput returning" << std::endl; #endif pthread_mutex_unlock(&m_mutex); } void AudioTimeStretcher::analyseBlock(size_t c, float *buf) { size_t i; // buf contains m_wlen samples #ifdef DEBUG_AUDIO_TIME_STRETCHER std::cerr << "AudioTimeStretcher::analyseBlock (channel " << c << ")" << std::endl; #endif m_analysisWindow->cut(buf); for (i = 0; i < m_wlen/2; ++i) { float temp = buf[i]; buf[i] = buf[i + m_wlen/2]; buf[i + m_wlen/2] = temp; } for (i = 0; i < m_wlen; ++i) { m_time[c][i] = buf[i]; } fftwf_execute(m_plan[c]); // m_time -> m_freq } bool AudioTimeStretcher::isTransient() { int count = 0; for (size_t i = 0; i <= m_wlen/2; ++i) { float real = 0.f, imag = 0.f; for (size_t c = 0; c < m_channels; ++c) { real += m_freq[c][i][0]; imag += m_freq[c][i][1]; } float sqrmag = (real * real + imag * imag); if (m_prevTransientMag[i] > 0.f) { float diff = 10.f * log10f(sqrmag / m_prevTransientMag[i]); if (diff > 3.f) ++count; } m_prevTransientMag[i] = sqrmag; } bool isTransient = false; // if (count > m_transientThreshold && // count > m_prevTransientScore * 1.2) { if (count > m_prevTransientScore && count > m_transientThreshold && int(count) - m_prevTransientScore > int(m_wlen) / 20) { isTransient = true; #ifdef DEBUG_AUDIO_TIME_STRETCHER std::cerr << "isTransient (count = " << count << ", prev = " << m_prevTransientScore << ", diff = " << count - m_prevTransientScore << ", ratio = " << (m_totalCount > 0 ? (float (m_n2sum) / float(m_totalCount * m_n1)) : 1.f) << ", ideal = " << m_ratio << ", nominal = " << getRatio() << ")" << std::endl; // } else { // std::cerr << " !transient (count = " << count << ", prev = " << m_prevTransientScore << ", diff = " << count - m_prevTransientScore << ")" << std::endl; #endif } m_prevTransientScore = count; return isTransient; } void AudioTimeStretcher::synthesiseBlock(size_t c, float *out, float *modulation, size_t lastStep) { bool unchanged = (lastStep == m_n1); for (size_t i = 0; i <= m_wlen/2; ++i) { float phase = princargf(atan2f(m_freq[c][i][1], m_freq[c][i][0])); float adjustedPhase = phase; // float binfreq = float(m_sampleRate * i) / m_wlen; if (!unchanged) { float mag = sqrtf(m_freq[c][i][0] * m_freq[c][i][0] + m_freq[c][i][1] * m_freq[c][i][1]); float omega = (2 * M_PI * m_n1 * i) / m_wlen; float expectedPhase = m_prevPhase[c][i] + omega; float phaseError = princargf(phase - expectedPhase); float phaseIncrement = (omega + phaseError) / m_n1; adjustedPhase = m_prevAdjustedPhase[c][i] + lastStep * phaseIncrement; float real = mag * cosf(adjustedPhase); float imag = mag * sinf(adjustedPhase); m_freq[c][i][0] = real; m_freq[c][i][1] = imag; } m_prevPhase[c][i] = phase; m_prevAdjustedPhase[c][i] = adjustedPhase; } fftwf_execute(m_iplan[c]); // m_freq -> m_time, inverse fft for (size_t i = 0; i < m_wlen/2; ++i) { float temp = m_time[c][i]; m_time[c][i] = m_time[c][i + m_wlen/2]; m_time[c][i + m_wlen/2] = temp; } for (size_t i = 0; i < m_wlen; ++i) { m_time[c][i] = m_time[c][i] / m_wlen; } m_synthesisWindow->cut(m_time[c]); for (size_t i = 0; i < m_wlen; ++i) { out[i] += m_time[c][i]; } if (modulation) { float area = m_analysisWindow->getArea(); for (size_t i = 0; i < m_wlen; ++i) { float val = m_synthesisWindow->getValue(i); modulation[i] += val * area; } } } }