''' Functions providing various graph statistics ''' import sys def avg_hops(graph): ''' ''' pass def degree_dist(graph, limits=(0,0), bin_num=10, mode='out'): ''' Computes the degree distribution for a graph. Returns a list of tuples where the first element of the tuple is the center of the bin representing a range of degrees and the second element of the tuple are the number of nodes with the degree falling in the range. Example:: .... ''' deg = [] if mode == 'inc': get_deg = graph.inc_degree else: get_deg = graph.out_degree for node in graph: deg.append( graph.get_degree(node) ) results = _binning(values=deg, limits=limits, bin_num=bin_num) return results def _binning(values, limits=(0,0), bin_num=10): ''' Bins data that falls between certain limits. Returns a list of tuples where the first element of the tuple is the center of the bin and the second element of the tuple are the counts. ''' if limits == (0, 0): eps = 1.0/sys.maxint min_val, max_val = min(values) - eps, max(values) + eps else: min_val, max_val = limits # get bin size bin_size = (max_val - min_val)/float(bin_num) bins = [0] * (bin_num) # will ignore these outliers for now out_points = 0 for value in values: try: if (value - min_val) < 0: out_points += 1 else: index = int((value - min_val)/float(bin_size)) bins[index] += 1 except: out_points += 1 # make it ready for an x,y plot result = [] center = (bin_size/2) + min_val for i, y in enumerate(bins): x = center + bin_size * i result.append( (x,y) ) return result if __name__ == '__main__': a = range(100) out = _binning(a, limits = (0, 0) ) print out