/********************************************************************** BondCentricTool - Bond Centric Manipulation Tool for Avogadro Copyright (C) 2007 by Shahzad Ali Copyright (C) 2007 by Ross Braithwaite Copyright (C) 2007 by James Bunt Copyright (C) 2007 by Marcus D. Hanwell Copyright (C) 2006,2007 by Benoit Jacob This file is part of the Avogadro molecular editor project. For more information, see Avogadro is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Avogadro is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. **********************************************************************/ #include "quaternion.h" using namespace Eigen; namespace Avogadro { // ########## Constructor ########## Quaternion::Quaternion(double w, double x, double y, double z) { m_W = w; m_V = Vector3d(x,y,z); } // ########## Constructor ########## Quaternion::Quaternion(double w, Vector3d v) { m_W = w; m_V = v; } // ########## w ########## double Quaternion::w() { return m_W; } // ########## x ########## double Quaternion::x() { return m_V.x(); } // ########## y ########## double Quaternion::y() { return m_V.y(); } // ########## z ########## double Quaternion::z() { return m_V.z(); } // ########## v ########## Vector3d Quaternion::v() { return m_V; } // ########## norm ########## double Quaternion::norm() { return sqrt(norm2()); } // ########## norm2 ########## double Quaternion::norm2() { return w() * w() + v().squaredNorm(); } // ########## multiply ########## Quaternion Quaternion::multiply(Quaternion right) { return Quaternion(w() * right.w() - v().dot(right.v()), w() * right.x() + x() * right.w() + y() * right.z() - z() * right.y(), w() * right.y() - x() * right.z() + y() * right.w() + z() * right.x(), w() * right.z() + x() * right.y() - y() * right.x() + z() * right.w()); } // ########## multiplyToVector ########## Vector3d Quaternion::multiplyToVector(Quaternion right) { return Vector3d(w() * right.x() + x() * right.w() + y() * right.z() - z() * right.y(), w() * right.y() - x() * right.z() + y() * right.w() + z() * right.x(), w() * right.z() + x() * right.y() - y() * right.x() + z() * right.w()); } // ########## multiplicitiveInverse ########## Quaternion Quaternion::multiplicitiveInverse() { double divisor = norm2(); return Quaternion(w() / divisor, - v() / divisor); } // ########## createRotationLeftHalf ########## Quaternion Quaternion::createRotationLeftHalf(double theta, Vector3d rotationVector) { double angleHalf = theta/2.0; double sinAngle = sin(angleHalf); return Quaternion(cos(angleHalf), rotationVector.x() * sinAngle, rotationVector.y() * sinAngle, rotationVector.z() * sinAngle); } // ########## performRotationMultiplication ########## Vector3d Quaternion::performRotationMultiplication(Quaternion left, Vector3d direction, Quaternion right) { return left.multiply(Quaternion(0,direction)).multiplyToVector(right); } }