// Copyright (C) 2003 Dominique Devriese // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License // as published by the Free Software Foundation; either version 2 // of the License, or (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA // 02110-1301, USA. #include "cubic_imp.h" #include "bogus_imp.h" #include "../misc/kigpainter.h" #include "../misc/screeninfo.h" #include "../misc/kignumerics.h" #include "../misc/equation.h" #include "../misc/common.h" #include "../kig/kig_view.h" #include #include #include CubicImp::CubicImp( const CubicCartesianData& data ) : CurveImp(), mdata( data ) { } CubicImp::~CubicImp() { } ObjectImp* CubicImp::transform( const Transformation& t ) const { bool valid = true; CubicCartesianData d = calcCubicTransformation( data(), t, valid ); d.normalize(); if ( valid ) return new CubicImp( d ); else return new InvalidImp; } void CubicImp::draw( KigPainter& p ) const { p.drawCurve( this ); } bool CubicImp::contains( const Coordinate& o, int width, const KigWidget& w ) const { return internalContainsPoint( o, w.screenInfo().normalMiss( width ) ); } bool CubicImp::inRect( const Rect&, int, const KigWidget& ) const { // TODO ? return false; } CubicImp* CubicImp::copy() const { return new CubicImp( mdata ); } double CubicImp::getParam( const Coordinate& p, const KigDocument& ) const { double x = p.x; double y = p.y; double t; double a000 = mdata.coeffs[0]; double a001 = mdata.coeffs[1]; double a002 = mdata.coeffs[2]; double a011 = mdata.coeffs[3]; double a012 = mdata.coeffs[4]; double a022 = mdata.coeffs[5]; double a111 = mdata.coeffs[6]; double a112 = mdata.coeffs[7]; double a122 = mdata.coeffs[8]; double a222 = mdata.coeffs[9]; /* * first project p onto the cubic. This is done by computing the * line through p in the direction of the gradient */ double f = a000 + a001*x + a002*y + a011*x*x + a012*x*y + a022*y*y + a111*x*x*x + a112*x*x*y + a122*x*y*y + a222*y*y*y; if ( f != 0 ) { double fx = a001 + 2*a011*x + a012*y + 3*a111*x*x + 2*a112*x*y + a122*y*y; double fy = a002 + 2*a022*y + a012*x + 3*a222*y*y + 2*a122*x*y + a112*x*x; Coordinate v = Coordinate (fx, fy); if ( f < 0 ) v = -v; // the line points away from the intersection double a, b, c, d; calcCubicLineRestriction ( mdata, p, v, a, b, c, d ); if ( a < 0 ) { a *= -1; b *= -1; c *= -1; d *= -1; } // computing the coefficients of the Sturm sequence double p1a = 2*b*b - 6*a*c; double p1b = b*c - 9*a*d; double p0a = c*p1a*p1a + p1b*(3*a*p1b - 2*b*p1a); // compute the number of roots for negative lambda int variations = calcCubicVariations ( 0, a, b, c, d, p1a, p1b, p0a ); bool valid; int numroots; double lambda = calcCubicRoot ( -1e10, 1e10, a, b, c, d, variations, valid, numroots ); if ( valid ) { Coordinate pnew = p + lambda*v; x = pnew.x; y = pnew.y; } } if (x > 0) t = x/(1+x); else t = x/(1-x); t = 0.5*(t + 1); t /= 3; Coordinate p1 = getPoint ( t ); Coordinate p2 = getPoint ( t + 1.0/3.0 ); Coordinate p3 = getPoint ( t + 2.0/3.0 ); double mint = t; double mindist = p1.valid() ? fabs ( y - p1.y ) : double_inf; if ( p2.valid() && fabs ( y - p2.y ) < mindist ) { mint = t + 1.0/3.0; mindist = fabs ( y - p2.y ); } if ( p3.valid() && fabs ( y - p3.y ) < mindist ) { mint = t + 2.0/3.0; } return mint; } const Coordinate CubicImp::getPoint( double p, const KigDocument& ) const { return getPoint( p ); } const Coordinate CubicImp::getPoint( double p ) const { /* * this isn't really elegant... * the magnitude of p tells which one of the maximum 3 intersections * of the vertical line with the cubic to take. */ p *= 3; int root = (int) p; assert ( root >= 0 ); assert ( root <= 3 ); if ( root == 3 ) root = 2; p -= root; assert ( 0 <= p && p <= 1 ); if ( p <= 0. ) p = 1e-6; if ( p >= 1. ) p = 1 - 1e-6; root++; p = 2*p - 1; double x; if (p > 0) x = p/(1 - p); else x = p/(1 + p); // calc the third degree polynomial: // compute the third degree polinomial: // double a000 = mdata.coeffs[0]; // double a001 = mdata.coeffs[1]; // double a002 = mdata.coeffs[2]; // double a011 = mdata.coeffs[3]; // double a012 = mdata.coeffs[4]; // double a022 = mdata.coeffs[5]; // double a111 = mdata.coeffs[6]; // double a112 = mdata.coeffs[7]; // double a122 = mdata.coeffs[8]; // double a222 = mdata.coeffs[9]; // // // first the y^3 coefficient, it coming only from a222: // double a = a222; // // next the y^2 coefficient (from a122 and a022): // double b = a122*x + a022; // // next the y coefficient (from a112, a012 and a002): // double c = a112*x*x + a012*x + a002; // // finally the constant coefficient (from a111, a011, a001 and a000): // double d = a111*x*x*x + a011*x*x + a001*x + a000; // commented out, since the bound is already computed when passing a huge // interval; the normalization is not needed also // renormalize: positive a // if ( a < 0 ) // { // a *= -1; // b *= -1; // c *= -1; // d *= -1; // } // // const double small = 1e-7; // int degree = 3; // if ( fabs(a) < small*fabs(b) || // fabs(a) < small*fabs(c) || // fabs(a) < small*fabs(d) ) // { // degree = 2; // if ( fabs(b) < small*fabs(c) || // fabs(b) < small*fabs(d) ) // { // degree = 1; // } // } // and a bound for all the real roots: // double bound; // switch (degree) // { // case 3: // bound = fabs(d/a); // if ( fabs(c/a) + 1 > bound ) bound = fabs(c/a) + 1; // if ( fabs(b/a) + 1 > bound ) bound = fabs(b/a) + 1; // break; // // case 2: // bound = fabs(d/b); // if ( fabs(c/b) + 1 > bound ) bound = fabs(c/b) + 1; // break; // // case 1: // default: // bound = fabs(d/c) + 1; // break; // } int numroots; bool valid = true; double y = calcCubicYvalue ( x, -double_inf, double_inf, root, mdata, valid, numroots ); if ( ! valid ) return Coordinate::invalidCoord(); else return Coordinate(x,y); // if ( valid ) return Coordinate(x,y); // root--; if ( root <= 0) root += 3; // y = calcCubicYvalue ( x, -bound, bound, root, mdata, valid, // numroots ); // if ( valid ) return Coordinate(x,y); // root--; if ( root <= 0) root += 3; // y = calcCubicYvalue ( x, -bound, bound, root, mdata, valid, // numroots ); // assert ( valid ); // return Coordinate(x,y); } int CubicImp::numberOfProperties() const { return Parent::numberOfProperties() + 1; } const QByteArrayList CubicImp::propertiesInternalNames() const { QByteArrayList l = Parent::propertiesInternalNames(); l << "cartesian-equation"; assert( l.size() == CubicImp::numberOfProperties() ); return l; } /* * cartesian equation property contributed by Carlo Sardi */ const QByteArrayList CubicImp::properties() const { QByteArrayList l = Parent::properties(); l << I18N_NOOP( "Cartesian Equation" ); assert( l.size() == CubicImp::numberOfProperties() ); return l; } const ObjectImpType* CubicImp::impRequirementForProperty( int which ) const { if ( which < Parent::numberOfProperties() ) return Parent::impRequirementForProperty( which ); else return CubicImp::stype(); } const char* CubicImp::iconForProperty( int which ) const { int pnum = 0; if ( which < Parent::numberOfProperties() ) return Parent::iconForProperty( which ); if ( which == Parent::numberOfProperties() + pnum++ ) return "kig_text"; // cartesian equation string else assert( false ); return ""; } ObjectImp* CubicImp::property( int which, const KigDocument& w ) const { int pnum = 0; if ( which < Parent::numberOfProperties() ) return Parent::property( which, w ); if ( which == Parent::numberOfProperties() + pnum++ ) return new StringImp( cartesianEquationString( w ) ); else assert( false ); return new InvalidImp; } const CubicCartesianData CubicImp::data() const { return mdata; } void CubicImp::visit( ObjectImpVisitor* vtor ) const { vtor->visit( this ); } bool CubicImp::equals( const ObjectImp& rhs ) const { return rhs.inherits( CubicImp::stype() ) && static_cast( rhs ).data() == data(); } const ObjectImpType* CubicImp::type() const { return CubicImp::stype(); } const ObjectImpType* CubicImp::stype() { static const ObjectImpType t( Parent::stype(), "cubic", I18N_NOOP( "cubic curve" ), I18N_NOOP( "Select this cubic curve" ), I18N_NOOP( "Select cubic curve %1" ), I18N_NOOP( "Remove a Cubic Curve" ), I18N_NOOP( "Add a Cubic Curve" ), I18N_NOOP( "Move a Cubic Curve" ), I18N_NOOP( "Attach to this cubic curve" ), I18N_NOOP( "Show a Cubic Curve" ), I18N_NOOP( "Hide a Cubic Curve" ) ); return &t; } bool CubicImp::containsPoint( const Coordinate& p, const KigDocument& ) const { return internalContainsPoint( p, test_threshold ); } bool CubicImp::internalContainsPoint( const Coordinate& p, double threshold ) const { double a000 = mdata.coeffs[0]; double a001 = mdata.coeffs[1]; double a002 = mdata.coeffs[2]; double a011 = mdata.coeffs[3]; double a012 = mdata.coeffs[4]; double a022 = mdata.coeffs[5]; double a111 = mdata.coeffs[6]; double a112 = mdata.coeffs[7]; double a122 = mdata.coeffs[8]; double a222 = mdata.coeffs[9]; double x = p.x; double y = p.y; double f = a000 + a001*x + a002*y + a011*x*x + a012*x*y + a022*y*y + a111*x*x*x + a112*x*x*y + a122*x*y*y + a222*y*y*y; double fx = a001 + 2*a011*x + a012*y + 3*a111*x*x + 2*a112*x*y + a122*y*y; double fy = a002 + a012*x + 2*a022*y + a112*x*x + 2*a122*x*y + 3*a222*y*y; double dist = fabs(f)/(fabs(fx) + fabs(fy)); return dist <= threshold; } bool CubicImp::isPropertyDefinedOnOrThroughThisImp( int which ) const { return Parent::isPropertyDefinedOnOrThroughThisImp( which ); } bool CubicImp::isVerticalCubic( ) const { return ( fabs( mdata.coeffs[9] ) < 1e-12 && // y^3 fabs( mdata.coeffs[7] ) < 1e-12 && // x^2y fabs( mdata.coeffs[8] ) < 1e-12 && // xy^2 fabs( mdata.coeffs[5] ) < 1e-12 && // y^2 fabs( mdata.coeffs[4] ) < 1e-12 && // xy fabs( mdata.coeffs[2] ) > 1e-5 ); // y } Rect CubicImp::surroundingRect() const { // it's probably possible to calculate this if it exists, but for // now we don't. return Rect::invalidRect(); } QString CubicImp::cartesianEquationString( const KigDocument& ) const { EquationString ret = EquationString( "" ); bool needsign = false; if ( isVerticalCubic() ) { double f = - 1.0/mdata.coeffs[2]; ret.addTerm( - f*mdata.coeffs[2], ret.y(), needsign ); ret.append( " = " ); needsign = false; ret.addTerm( f*mdata.coeffs[6], ret.x3(), needsign ); ret.addTerm( f*mdata.coeffs[9], ret.y3(), needsign ); ret.addTerm( f*mdata.coeffs[7], ret.x2y(), needsign ); ret.addTerm( f*mdata.coeffs[8], ret.xy2(), needsign ); ret.addTerm( f*mdata.coeffs[5], ret.y2(), needsign ); ret.addTerm( f*mdata.coeffs[3], ret.x2(), needsign ); ret.addTerm( f*mdata.coeffs[4], ret.xy(), needsign ); ret.addTerm( f*mdata.coeffs[1], ret.x(), needsign ); ret.addTerm( f*mdata.coeffs[0], "", needsign ); return ret; } ret.addTerm( mdata.coeffs[6], ret.x3(), needsign ); ret.addTerm( mdata.coeffs[9], ret.y3(), needsign ); ret.addTerm( mdata.coeffs[7], ret.x2y(), needsign ); ret.addTerm( mdata.coeffs[8], ret.xy2(), needsign ); ret.addTerm( mdata.coeffs[5], ret.y2(), needsign ); ret.addTerm( mdata.coeffs[3], ret.x2(), needsign ); ret.addTerm( mdata.coeffs[4], ret.xy(), needsign ); ret.addTerm( mdata.coeffs[1], ret.x(), needsign ); ret.addTerm( mdata.coeffs[2], ret.y(), needsign ); ret.addTerm( mdata.coeffs[0], "", needsign ); ret.append( " = 0" ); // ret.prettify(); return ret; // /* // * unfortunately QStrings.arg method is limited to %1, %9, so we cannot // * treat all 10 arguments! Let's split the equation in two parts... // * Now this ends up also in the translation machinery, is this really // * necessary? Otherwise we could do a little bit of tidy up on the // * the equation (removal of zeros, avoid " ... + -1234 x ", etc.) // */ // // QString ret = i18n( "%6 x³ + %9 y³ + %7 x²y + %8 xy² + %5 y² + %3 x² + %4 xy + %1 x + %2 y" ); // ret = ret.arg( ret.chop( mdata.coeffs[1] ), 0, 'g', 3 ); // ret = ret.arg( ret.chop( mdata.coeffs[2] ), 0, 'g', 3 ); // ret = ret.arg( ret.chop( mdata.coeffs[3] ), 0, 'g', 3 ); // ret = ret.arg( ret.chop( mdata.coeffs[4] ), 0, 'g', 3 ); // ret = ret.arg( ret.chop( mdata.coeffs[5] ), 0, 'g', 3 ); // ret = ret.arg( ret.chop( mdata.coeffs[6] ), 0, 'g', 3 ); // ret = ret.arg( ret.chop( mdata.coeffs[7] ), 0, 'g', 3 ); // ret = ret.arg( ret.chop( mdata.coeffs[8] ), 0, 'g', 3 ); // ret = ret.arg( ret.chop( mdata.coeffs[9] ), 0, 'g', 3 ); // ret.append( " + %1 = 0" ); // ret = ret.arg( ret.chop( mdata.coeffs[0] ), 0, 'g', 3 ); // ret.replace( "+ -", "- " ); // ret.replace( "+-", "-" ); // return ret; }