// Copyright (C) 2005 Maurizio Paolini // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License // as published by the Free Software Foundation; either version 2 // of the License, or (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA // 02110-1301, USA. #include "inversion_type.h" #include #include "object_imp.h" #include "point_imp.h" #include "line_imp.h" #include "circle_imp.h" #include "other_imp.h" #include "bogus_imp.h" #include "special_imptypes.h" #include "../misc/common.h" #include static const char str1[] = I18N_NOOP( "Invert with respect to this circle" ); static const char str2[] = I18N_NOOP( "Select the circle we want to invert against..." ); static const ArgsParser::spec argsspecCircularInversion[] = { { &invertibleimptypeinstance, I18N_NOOP( "Compute the inversion of this object" ), I18N_NOOP( "Select the object to invert..." ), false }, { CircleImp::stype(), str1, str2, false } }; KIG_INSTANTIATE_OBJECT_TYPE_INSTANCE( CircularInversionType ) CircularInversionType::CircularInversionType() : ArgsParserObjectType( "CircularInversion", argsspecCircularInversion, 2 ) { } CircularInversionType::~CircularInversionType() { } const CircularInversionType* CircularInversionType::instance() { static const CircularInversionType s; return &s; } const ObjectImpType* CircularInversionType::resultId() const { return &invertibleimptypeinstance; } ObjectImp* CircularInversionType::calc( const Args& args, const KigDocument& ) const { if ( args.size() == 2 && args[1]->inherits( LineImp::stype() ) ) { /* we also accept the special case when the circle becomes a * straight line (this is not accepted during interactive construction, * but could happen dinamically when a construction can result either * with a circle or a line. * In this case we simply have a reflection */ LineData d = static_cast( args[1] )->data(); Transformation t = Transformation::lineReflection( d ); return args[0]->transform( t ); } if ( ! margsparser.checkArgs( args ) ) return new InvalidImp; const CircleImp* refcircle = static_cast( args[1] ); Coordinate refc = refcircle->center(); double refrsq = refcircle->squareRadius(); if ( args[0]->inherits( PointImp::stype() ) ) { Coordinate relp = static_cast( args[0] )->coordinate() - refc; double normsq = relp.x*relp.x + relp.y*relp.y; if ( normsq == 0 ) return new InvalidImp; return new PointImp( refc + (refrsq/normsq)*relp ); } if ( args[0]->inherits( AbstractLineImp::stype() ) ) { bool isline = args[0]->inherits( LineImp::stype() ); bool issegment = args[0]->inherits( SegmentImp::stype() ); bool isray = args[0]->inherits( RayImp::stype() ); const LineData line = static_cast( args[0] )->data(); Coordinate rela = line.a - refc; Coordinate relb = line.b - refc; Coordinate ab = relb - rela; double t = (relb.x*ab.x + relb.y*ab.y)/(ab.x*ab.x + ab.y*ab.y); Coordinate relh = relb - t*ab; double normhsq = relh.x*relh.x + relh.y*relh.y; if ( isline ) { if ( normhsq < 1e-12*refrsq ) return new LineImp( line.a, line.b ); Coordinate newcenter = refc + 0.5*refrsq/normhsq*relh; double newradius = 0.5*refrsq/sqrt(normhsq); return new CircleImp( newcenter, newradius ); } if ( issegment || isray ) { /* * now for the SegmentImp or RayImp * compute the inversion of the two endpoints */ Coordinate newcenterrel = 0.5*refrsq/normhsq*relh; Coordinate relainv = refrsq/rela.squareLength() * rela; Coordinate relbinv = Coordinate( 0., 0. ); if ( issegment ) relbinv = refrsq/relb.squareLength() * relb; if ( normhsq < 1e-12*refrsq ) { if ( rela.squareLength() < 1e-12 ) { return new RayImp( relbinv + refc, 2*relbinv + refc ); } if ( issegment && relb.squareLength() < 1e-12 ) { return new RayImp( relainv + refc, 2*relainv + refc ); } if ( relb.x*rela.x + relb.y*rela.y > 0 ) { return new SegmentImp( relainv + refc, relbinv + refc ); } return new InvalidImp(); } double newradius = 0.5*refrsq/sqrt(normhsq); relainv -= newcenterrel; relbinv -= newcenterrel; double angle1 = atan2( relainv.y, relainv.x ); double angle2 = atan2( relbinv.y, relbinv.x ); double angle = angle2 - angle1; if ( ab.x*rela.y - ab.y*rela.x > 0 ) { angle1 = angle2; angle = -angle; } while ( angle1 <= -M_PI ) angle1 += 2*M_PI; while ( angle1 > M_PI ) angle1 -= 2*M_PI; while ( angle < 0 ) angle += 2*M_PI; while ( angle >= 2*M_PI ) angle -= 2*M_PI; return new ArcImp( newcenterrel + refc, newradius, angle1, angle ); } return new InvalidImp; } if ( args[0]->inherits( CircleImp::stype() ) ) { const CircleImp* circle = static_cast( args[0] ); Coordinate c = circle->center() - refc; double clength = c.length(); Coordinate cnorm = Coordinate (1.,0.); if ( clength != 0.0 ) cnorm = c/clength; double r = circle->radius(); Coordinate tc = r*cnorm; Coordinate b = c + tc; //(1 + t)*c; double bsq = b.x*b.x + b.y*b.y; Coordinate bprime = refrsq*b/bsq; if ( std::fabs( clength - r ) < 1e-6*clength ) // circle through origin -> line { return new LineImp( bprime+refc, bprime+refc+Coordinate( -c.y, c.x ) ); } Coordinate a = c - tc; double asq = a.x*a.x + a.y*a.y; Coordinate aprime = refrsq*a/asq; Coordinate cprime = 0.5*(aprime + bprime); double rprime = 0.5*( bprime - aprime ).length(); return new CircleImp( cprime + refc, rprime ); } if ( args[0]->inherits( ArcImp::stype() ) ) { const ArcImp* arc = static_cast( args[0] ); Coordinate c = arc->center() - refc; double clength = c.length(); Coordinate cnorm = Coordinate (1.,0.); if ( clength != 0.0 ) cnorm = c/clength; double r = arc->radius(); /* * r > clength means center of inversion circle inside of circle supporting arc */ Coordinate tc = r*cnorm; Coordinate b = c + tc; double bsq = b.x*b.x + b.y*b.y; Coordinate bprime = refrsq*b/bsq; if ( std::fabs( clength - r ) < 1e-6*clength ) // support circle through origin -> // segment, ray or invalid // (reversed segment, union of two rays) { bool valid1 = false; bool valid2 = false; Coordinate ep1 = arc->firstEndPoint() - refc; Coordinate ep2 = arc->secondEndPoint() - refc; Coordinate ep1inv = Coordinate::invalidCoord(); Coordinate ep2inv = Coordinate::invalidCoord(); double ep1sq = ep1.squareLength(); if ( ep1sq > 1e-12 ) { valid1 = true; ep1inv = refrsq/ep1sq * ep1; } Coordinate rayendp = ep1inv; int sign = 1; double ep2sq = ep2.squareLength(); if ( ep2sq > 1e-12 ) { valid2 = true; ep2inv = refrsq/ep2sq * ep2; rayendp = ep2inv; sign = -1; } if ( valid1 || valid2 ) { if ( valid1 && valid2 ) { // this gives either a segment or the complement of a segment (relative // to its support line). We return a segment in any case (fixme) double ang = atan2( -c.y, -c.x ); double sa = arc->startAngle(); if ( ang < sa ) ang += 2*M_PI; if ( ang - sa - arc->angle() < 0 ) return new InvalidImp(); return new SegmentImp( ep1inv + refc, ep2inv + refc ); } else return new RayImp ( rayendp + refc, rayendp + refc + sign*Coordinate( -c.y, c.x ) ); // this should give a Ray } else return new LineImp( bprime+refc, bprime+refc+Coordinate( -c.y, c.x ) ); } Coordinate a = c - tc; double asq = a.x*a.x + a.y*a.y; Coordinate aprime = refrsq*a/asq; Coordinate cprime = 0.5*(aprime + bprime); double rprime = 0.5*( bprime - aprime ).length(); Coordinate ep1 = arc->firstEndPoint() - refc; double ang1 = arc->startAngle(); double newstartangle = 2*atan2(ep1.y,ep1.x) - ang1; Coordinate ep2 = arc->secondEndPoint() - refc; double ang2 = ang1 + arc->angle(); double newendangle = 2*atan2(ep2.y,ep2.x) - ang2; double newangle = newendangle - newstartangle; /* * newstartangle and newendangle might have to be exchanged: * this is the case if the circle supporting our arc does not * contain the center of the inversion circle */ if ( r < clength ) { newstartangle = newendangle - M_PI; newangle = - newangle; // newendangle is no-longer valid } while ( newstartangle <= -M_PI ) newstartangle += 2*M_PI; while ( newstartangle > M_PI ) newstartangle -= 2*M_PI; while ( newangle < 0 ) newangle += 2*M_PI; while ( newangle >= 2*M_PI ) newangle -= 2*M_PI; return new ArcImp( cprime + refc, rprime, newstartangle, newangle ); } return new InvalidImp; } /* * inversion of a point */ static const ArgsParser::spec argsspecInvertPoint[] = { { PointImp::stype(), I18N_NOOP( "Compute the inversion of this point" ), I18N_NOOP( "Select the point to invert..." ), false }, { CircleImp::stype(), str1, str2, false } }; KIG_INSTANTIATE_OBJECT_TYPE_INSTANCE( InvertPointType ) InvertPointType::InvertPointType() : ArgsParserObjectType( "InvertPoint", argsspecInvertPoint, 2 ) { } InvertPointType::~InvertPointType() { } const InvertPointType* InvertPointType::instance() { static const InvertPointType s; return &s; } const ObjectImpType* InvertPointType::resultId() const { return PointImp::stype(); } ObjectImp* InvertPointType::calc( const Args& args, const KigDocument& ) const { if ( args.size() == 2 && args[1]->inherits( LineImp::stype() ) ) { /* we also accept the special case when the circle becomes a * straight line (see comment above) */ LineData d = static_cast( args[1] )->data(); Transformation t = Transformation::lineReflection( d ); return args[0]->transform( t ); } if ( ! margsparser.checkArgs( args ) ) return new InvalidImp; const CircleImp* c = static_cast( args[1] ); Coordinate center = c->center(); Coordinate relp = static_cast( args[0] )->coordinate() - center; double radiussq = c->squareRadius(); double normsq = relp.x*relp.x + relp.y*relp.y; if ( normsq == 0 ) return new InvalidImp; return new PointImp( center + (radiussq/normsq)*relp ); } /* * old-style invertion types. These can be safely removed, since trying * to load kig files that use these constructions are correctly converted * into the new CircularInversion. */ /* * inversion of a line */ static const ArgsParser::spec argsspecInvertLine[] = { { LineImp::stype(), I18N_NOOP( "Compute the inversion of this line" ), I18N_NOOP( "Select the line to invert..." ), false }, { CircleImp::stype(), str1, str2, false } }; KIG_INSTANTIATE_OBJECT_TYPE_INSTANCE( InvertLineType ) InvertLineType::InvertLineType() : ArgsParserObjectType( "InvertLineObsolete", argsspecInvertLine, 2 ) { } InvertLineType::~InvertLineType() { } const InvertLineType* InvertLineType::instance() { static const InvertLineType s; return &s; } const ObjectImpType* InvertLineType::resultId() const { return CircleImp::stype(); } ObjectImp* InvertLineType::calc( const Args& args, const KigDocument& ) const { if ( ! margsparser.checkArgs( args ) ) return new InvalidImp; const CircleImp* c = static_cast( args[1] ); Coordinate center = c->center(); double radiussq = c->squareRadius(); const LineData line = static_cast( args[0] )->data(); Coordinate relb = line.b - center; Coordinate ab = line.b - line.a; double t = (relb.x*ab.x + relb.y*ab.y)/(ab.x*ab.x + ab.y*ab.y); Coordinate relh = relb - t*ab; double normhsq = relh.x*relh.x + relh.y*relh.y; if ( normhsq < 1e-12*radiussq ) return new LineImp( line.a, line.b ); Coordinate newcenter = center + 0.5*radiussq/normhsq*relh; double newradius = 0.5*radiussq/sqrt(normhsq); return new CircleImp( newcenter, newradius ); } /* * inversion of a segment */ static const ArgsParser::spec argsspecInvertSegment[] = { { SegmentImp::stype(), I18N_NOOP( "Compute the inversion of this segment" ), I18N_NOOP( "Select the segment to invert..." ), false }, { CircleImp::stype(), str1, str2, false } }; KIG_INSTANTIATE_OBJECT_TYPE_INSTANCE( InvertSegmentType ) InvertSegmentType::InvertSegmentType() : ArgsParserObjectType( "InvertSegmentObsolete", argsspecInvertSegment, 2 ) { } InvertSegmentType::~InvertSegmentType() { } const InvertSegmentType* InvertSegmentType::instance() { static const InvertSegmentType s; return &s; } const ObjectImpType* InvertSegmentType::resultId() const { return ArcImp::stype(); } ObjectImp* InvertSegmentType::calc( const Args& args, const KigDocument& ) const { if ( ! margsparser.checkArgs( args ) ) return new InvalidImp; const CircleImp* c = static_cast( args[1] ); Coordinate center = c->center(); double radiussq = c->squareRadius(); const LineData line = static_cast( args[0] )->data(); Coordinate rela = line.a - center; Coordinate relb = line.b - center; Coordinate ab = relb - rela; double t = (relb.x*ab.x + relb.y*ab.y)/(ab.x*ab.x + ab.y*ab.y); Coordinate relh = relb - t*ab; double normhsq = relh.x*relh.x + relh.y*relh.y; /* * compute the inversion of the two endpoints */ Coordinate newcenterrel = 0.5*radiussq/normhsq*relh; Coordinate relainv = radiussq/rela.squareLength() * rela; Coordinate relbinv = radiussq/relb.squareLength() * relb; if ( normhsq < 1e-12*radiussq ) { if ( rela.squareLength() < 1e-12 ) { return new RayImp( relbinv + center, 2*relbinv + center ); } if ( relb.squareLength() < 1e-12 ) { return new RayImp( relainv + center, 2*relainv + center ); } if ( relb.x*rela.x + relb.y*rela.y > 0 ) { return new SegmentImp( relainv + center, relbinv + center ); } return new InvalidImp(); } double newradius = 0.5*radiussq/sqrt(normhsq); relainv -= newcenterrel; relbinv -= newcenterrel; double angle1 = atan2( relainv.y, relainv.x ); double angle2 = atan2( relbinv.y, relbinv.x ); double angle = angle2 - angle1; if ( ab.x*rela.y - ab.y*rela.x > 0 ) { angle1 = angle2; angle = -angle; } while ( angle1 < 0 ) angle1 += 2*M_PI; while ( angle1 >= 2*M_PI ) angle1 -= 2*M_PI; while ( angle < 0 ) angle += 2*M_PI; while ( angle >= 2*M_PI ) angle -= 2*M_PI; return new ArcImp( newcenterrel + center, newradius, angle1, angle ); } /* * inversion of a circle */ static const ArgsParser::spec argsspecInvertCircle[] = { { CircleImp::stype(), I18N_NOOP( "Compute the inversion of this circle" ), I18N_NOOP( "Select the circle to invert..." ), false }, { CircleImp::stype(), str1, str2, false } }; KIG_INSTANTIATE_OBJECT_TYPE_INSTANCE( InvertCircleType ) InvertCircleType::InvertCircleType() : ArgsParserObjectType( "InvertCircleObsolete", argsspecInvertCircle, 2 ) { } InvertCircleType::~InvertCircleType() { } const InvertCircleType* InvertCircleType::instance() { static const InvertCircleType s; return &s; } const ObjectImpType* InvertCircleType::resultId() const { return CircleImp::stype(); } ObjectImp* InvertCircleType::calc( const Args& args, const KigDocument& ) const { if ( ! margsparser.checkArgs( args ) ) return new InvalidImp; const CircleImp* refcircle = static_cast( args[1] ); Coordinate refc = refcircle->center(); double refrsq = refcircle->squareRadius(); const CircleImp* circle = static_cast( args[0] ); Coordinate c = circle->center() - refc; double clength = c.length(); Coordinate cnorm = Coordinate (1.,0.); if ( clength != 0.0 ) cnorm = c/clength; double r = circle->radius(); Coordinate tc = r*cnorm; Coordinate b = c + tc; //(1 + t)*c; double bsq = b.x*b.x + b.y*b.y; Coordinate bprime = refrsq*b/bsq; if ( std::fabs( clength - r ) < 1e-6*clength ) // circle through origin -> line { return new LineImp( bprime+refc, bprime+refc+Coordinate( -c.y, c.x ) ); } Coordinate a = c - tc; double asq = a.x*a.x + a.y*a.y; Coordinate aprime = refrsq*a/asq; Coordinate cprime = 0.5*(aprime + bprime); double rprime = 0.5*( bprime - aprime ).length(); return new CircleImp( cprime + refc, rprime ); } /* * inversion of an arc */ static const ArgsParser::spec argsspecInvertArc[] = { { ArcImp::stype(), I18N_NOOP( "Compute the inversion of this arc" ), I18N_NOOP( "Select the arc to invert..." ), false }, { CircleImp::stype(), str1, str2, false } }; KIG_INSTANTIATE_OBJECT_TYPE_INSTANCE( InvertArcType ) InvertArcType::InvertArcType() : ArgsParserObjectType( "InvertArcObsolete", argsspecInvertArc, 2 ) { } InvertArcType::~InvertArcType() { } const InvertArcType* InvertArcType::instance() { static const InvertArcType s; return &s; } const ObjectImpType* InvertArcType::resultId() const { return ArcImp::stype(); } ObjectImp* InvertArcType::calc( const Args& args, const KigDocument& ) const { if ( ! margsparser.checkArgs( args ) ) return new InvalidImp; const CircleImp* refcircle = static_cast( args[1] ); Coordinate refc = refcircle->center(); double refrsq = refcircle->squareRadius(); const ArcImp* arc = static_cast( args[0] ); Coordinate c = arc->center() - refc; double clength = c.length(); Coordinate cnorm = Coordinate (1.,0.); if ( clength != 0.0 ) cnorm = c/clength; double r = arc->radius(); /* * r > clength means center of inversion circle inside of circle supporting arc */ Coordinate tc = r*cnorm; Coordinate b = c + tc; double bsq = b.x*b.x + b.y*b.y; Coordinate bprime = refrsq*b/bsq; if ( std::fabs( clength - r ) < 1e-6*clength ) // support circle through origin -> // segment, ray or invalid // (reversed segment, union of two rays) { bool valid1 = false; bool valid2 = false; Coordinate ep1 = arc->firstEndPoint() - refc; Coordinate ep2 = arc->secondEndPoint() - refc; Coordinate ep1inv = Coordinate::invalidCoord(); Coordinate ep2inv = Coordinate::invalidCoord(); double ep1sq = ep1.squareLength(); if ( ep1sq > 1e-12 ) { valid1 = true; ep1inv = refrsq/ep1sq * ep1; } Coordinate rayendp = ep1inv; int sign = 1; double ep2sq = ep2.squareLength(); if ( ep2sq > 1e-12 ) { valid2 = true; ep2inv = refrsq/ep2sq * ep2; rayendp = ep2inv; sign = -1; } if ( valid1 || valid2 ) { if ( valid1 && valid2 ) { // this gives either a segment or the complement of a segment (relative // to its support line). We return a segment in any case (fixme) double ang = atan2( -c.y, -c.x ); double sa = arc->startAngle(); if ( ang < sa ) ang += 2*M_PI; if ( ang - sa - arc->angle() < 0 ) return new InvalidImp(); return new SegmentImp( ep1inv + refc, ep2inv + refc ); } else return new RayImp ( rayendp + refc, rayendp + refc + sign*Coordinate( -c.y, c.x ) ); // this should give a Ray } else return new LineImp( bprime+refc, bprime+refc+Coordinate( -c.y, c.x ) ); } Coordinate a = c - tc; double asq = a.x*a.x + a.y*a.y; Coordinate aprime = refrsq*a/asq; Coordinate cprime = 0.5*(aprime + bprime); double rprime = 0.5*( bprime - aprime ).length(); Coordinate ep1 = arc->firstEndPoint() - refc; double ang1 = arc->startAngle(); double newstartangle = 2*atan2(ep1.y,ep1.x) - ang1; Coordinate ep2 = arc->secondEndPoint() - refc; double ang2 = ang1 + arc->angle(); double newendangle = 2*atan2(ep2.y,ep2.x) - ang2; double newangle = newendangle - newstartangle; /* * newstartangle and newendangle might have to be exchanged: * this is the case if the circle supporting our arc does not * contain the center of the inversion circle */ if ( r < clength ) { newstartangle = newendangle - M_PI; newangle = - newangle; // newendangle is no-longer valid } while ( newstartangle < 0 ) newstartangle += 2*M_PI; while ( newstartangle >= 2*M_PI ) newstartangle -= 2*M_PI; while ( newangle < 0 ) newangle += 2*M_PI; while ( newangle >= 2*M_PI ) newangle -= 2*M_PI; return new ArcImp( cprime + refc, rprime, newstartangle, newangle ); }